The number of ways that five destinations can be visited is 237336
Calculating the number of ways that five destinations can be visitedThis problem involves calculating the number of combinations of 5 destinations that can be chosen out of a total of 33 destinations. This can be calculated using the formula for combinations:
nCr = n! / (r! * (n-r)!)
where n is the total number of items (33 in this case), r is the number of items to choose (5 in this case), and ! denotes factorial, which is the product of all positive integers up to that number.
Using this formula, we get:
33C5 = 33! / (5! * (33-5)!)
33C5 = 237336
Therefore, there are 237336 ways to choose 5 destinations out of 33 possible destinations.
Read more about combinations at
https://brainly.com/question/11732255
#SPJ1
Mrs. Brown is giving a reward to the winner of a game in math class. She has 4 types of candy bars and is allowing the winner to choose 2. How many possible combinations can they choose?
Answer:
Explanation:
To find the total number of possible combinations, we need to use the combination formula. Since the order of the candy bars doesn't matter, we can use the formula for combinations, which is:
n C r = n! / (r! * (n-r)!)
where n is the total number of candy bars, and r is the number of candy bars we want to choose.
In this case, n = 4 (since there are 4 types of candy bars), and r = 2 (since the winner is choosing 2 candy bars).
So we have:
4 C 2 = 4! / (2! * (4-2)!)
= 4! / (2! * 2!)
= (4 * 3 * 2 * 1) / (2 * 1 * 2 * 1)
= 6
Therefore, there are 6 possible combinations of 2 candy bars that the winner can choose.