The value of the account at the end of 50 years is $432,125.19.
1. For the first 20 years:
The monthly contribution is $110, and the interest rate is 5.5% compounded monthly.
Using the formula:
FV = P [[tex](1 + r)^n[/tex] - 1] / r
where:
FV = Future value
P = Monthly payment
r = Monthly interest rate
n = Number of months
Plugging in the values:
FV1 = $110 x [tex][(1 + 0.055/12)^{(20)(12)[/tex] - 1] / (0.055/12)
= $67,100.54
2. For the next 25 years:
The monthly contribution increases to $225, and the interest rate remains the same at 5.5% compounded monthly.
Plugging in the values:
FV2 = $225 [[tex][(1 + 0.055/12)^{(25)(12)[/tex] - 1] / (0.055/12)
= $307,527.10
3. For the last 5 years:
The monthly contribution further increases to $350, and the interest rate is still 5.5% compounded monthly. Again, we will use the same formula to calculate the future value of the contributions made during this period.
Plugging in the values:
FV3 = $350 [[tex][(1 + 0.055/12)^{(5)(12)[/tex] - 1] / (0.055/12)
= $57,497.55
Finally, the total value of the account at the end of 50 years
Total Value = FV1 + FV2 + FV3
= $67,100.54 + $307,527.10 + $57,497.55
= $432,125.19
Learn more about Compound interest here:
https://brainly.com/question/14295570
#SPJ6
Given vectors u = (2, 5) and v = (-5, -2), find the difference u - v and
represent the difference graphically in two different ways.
The difference between two vectors [tex](u - v )[/tex] = [tex](7,7)[/tex].
What is vectors?An entity with both magnitude and direction is referred to as a vector. A vector can be visualized geometrically as a directed line piece, with an arrow pointing in the direction and a length equal to the magnitude of the vector. The vector points in a direction from its tail to its head.
Therefore subtracting [tex]u-v[/tex] we get
[tex]u-v = (2,5)-(-5,-2\\ = (2+5,5+2)\\=(7,7)[/tex]
The distinction between u and v can be graphically represented in two ways:
The next step is to create the vector [tex]u-v[/tex], which begins at the same location as [tex]u[/tex] and ends at [tex]v[/tex].
In an algebraic sense, the vectors u and v can be represented as points in a coordinate plane, and the vector u - v as a line connecting these places.
The following figure shows the construction with negative velocities
In this case, the vectors u and v are represented by location A and point B, respectively.
Therefore the difference between two vectors [tex](u - v )[/tex] = [tex](7,7)[/tex].
To learn more about vectors, visit
brainly.com/question/24256726
#SPJ1
12 ÷ {[(6 × 5) ÷ (4 + 1) ÷ 2] + 1} =
Hi
The value of the expression 12 ÷ {[(6 × 5) ÷ (4 + 1) ÷ 2] + 1} is 3.
Evaluating the expressionWe can simplify the expression using the order of operations (also known as PEMDAS)
Which dictates that we perform the operations inside the parentheses first, then any exponents or roots,
Then multiplication and division from left to right, and finally addition and subtraction from left to right.
Applying this rule, we get:
12 ÷ {[(6 × 5) ÷ (4 + 1) ÷ 2] + 1}
= 12 ÷ {[(30) ÷ (5) ÷ 2] + 1}
= 12 ÷ {[6 ÷ 2] + 1}
= 12 ÷ {3 + 1}
= 12 ÷ 4
= 3
Therefore, the value of the expression is 3.
Read more about expression at
https://brainly.com/question/15775046
#SPJ1
The ages of the people at two tables in a restaurant are shown in the chart.
Which statement about the ranges of the data sets is true?
The statement that is true about the ranges of the data sets is "The range of ages at Table 2 is 1 year greater than the range of ages at Table 1."
What is a data set?In statistics, a data set is a collection of observations or measurements that are typically organized into rows and columns. Each row in a data set represents a single observation or individual, while each column represents a variable or characteristic that has been measured.
The range of a data set is the difference between the maximum and minimum values in the set.
For table 1, the minimum age is 31 and the maximum age is 43, so the range is 43 - 31 = 12.
For table 2, the minimum age is 29 and the maximum age is 42, so the range is 42 - 29 = 13.
Therefore, the statement that is true about the ranges of the data sets is:
"The range of ages at Table 2 is 1 year greater than the range of ages at Table 1."
To know more about data sets visit:
brainly.com/question/29412884
#SPJ1
Complete question:
The ages of the people at two tables in a restaurant are shown in the chart.
Which statement about the range of the data sets is true?
The range of ages at Table 1 is 1 year greater than the range of ages at Table 2.The range of ages at Table 1 is 2 years greater than the range of ages at Table 2.The range of ages at Table 2 is 1 year greater than the range of ages at Table 1.The range of ages at Table 1 is equal to the range of ages at Table 2.complete the diagram
4 →6
2→___
___→ -3
Answer:
The missing values to complete the diagram are:
4 → 6
2 → 5
-1 → -3
To find the missing values, we need to follow the pattern of the given arrows.
Starting with 4 and going to 6, we add 2 to get to the next number. So, starting with 2, we add 3 to get the missing value of 5.
Going from 2 to 5, we add 3 once again. So, to get from 5 to the next number, we add 3 to get 8.
To find the missing value that goes from an unknown number to -3, we need to subtract 3. Since we have already used the numbers 2 and 4, we can try a negative number. Starting with -1 and subtracting 3 gives us the missing value of -3.
Therefore, the completed diagram would look like this:
4 → 6
2 → 5
-1 → -3
Another MethodHere's the completed diagram with the missing values filled in based on the pattern:
```
4 → 6
2 → 4
-1 → -3
```
The pattern seems to be that for each input value (x), the output value (y) is x + 2.
HELP I NEED THIS ASAPPP!!!
Mr. Harris graded papers at the end of the school day. The table below shows how many papers he graded in minutes.
Minutes Number of papers graded
4 2
16 8
20 10
24 12
At this rate, how many papers will Mr. Harris grade in 60 minutes?
30 papers
36 papers
48 papers
52 papers
The number of papers that will be graded in 60 minutes is 30 papers.
What is proportion?Proportion refers to the relationship or comparison between two or more quantities or values. It expresses how one quantity relates to another in terms of size, magnitude, or scale. Proportions are often used to describe the relative sizes or ratios of different elements within a whole or between different parts of a whole.
We have that;
2 papers are graded in 4 minutes
1 paper will be graded in 1 * 4/2
= 2 minutes
If 1 paper is graded in 2 minutes
x papers are graded in 60 minutes
x = 30 papers
Learn more about proportion:https://brainly.com/question/32890782
#SPJ1
The mystery number is a three-digit number. Its digits are 1, 8, and 6.
• The 8 has a digit on its left and on its right.
• The 6 is not the last digit.
What is the mystery number?
Answer:
a
Step-by-step explanation:
Which inequality is true?
A 0.23 < 0.089
B 1.035 > 1.04
© 2.358 < 2.369
D 99.863 > 99.901
Answer:
C
Step-by-step explanation:
We Can see from the < pointing to the higher side.
Can someone explain this
Answer:
∀x(D(x)→P(x))→(∃y∃z(St(y) ∧ St(z) ∧ R(y) ∧ R(z) ∧ y≠z))
Consider a triangle A BC like the one below. Suppose that a = 21, b = 26, and A = 349. (The figure is not drawn to scale.) Solve the triangle.
Carry your intermediate computations to at least four decimal places, and round your answers to the nearest tenth.
If no such triangle exists, enter "No solution." If there is more than one solution, use the button labeled "or"
The angles of the triangle are A=146.8°,B=22.3° and C=10.9°
define cosine ruleThe cosine rule states that for any triangle with sides of length a, b, and c and angles A, B, and C (with the side opposite each angle labeled with the corresponding lowercase letter), the following equation holds:
a² = b² + c²- 2bc cos(A)
b² = a² + c² - 2ac cos(B)
c² = a² + b² - 2ab cos(C)
Using the cosine rule,
a²=b²+c²-2bcCosA
2bcCosA=b²+c²-a²
A=cos⁻¹(b²+c²-a²/2bc)
A=cos⁻¹(18²+9²-26²/2×18×9)
A=cos⁻¹(-0.83642)=146.8°
Also from b²=a²+c²-2acCosB
B=cos⁻¹(a²+c²-b²/2ac)
B=cos⁻¹(26²+9²-18²/2×26×9)
B=cos⁻¹(0.925)=22.3°
The total angle of the triangle is 180°
A+B+C=180°
C=180°-146.8°+22.3°=10.9°
Thus, the angles of the triangle are A=146.8°,B=22.3° and C=10.9°
To know more about equation, visit:
https://brainly.com/question/29657983
#SPJ1
The compelte question is;
Image is attached below
In which quadrant is the point (7, -2) located on the coordinate plane?
A. Quadrant I
B. Quadrant II
C. Quadrant III
D. Quadrant IV
SHOW YOUR WORK PLEASE.
Please help ASAP! Thank you
Answer:
a. lines intersecting at a single point
b. one solution
Step-by-step explanation:
a. The equations can be rewritten as:
y = -5x+23 and y = -1/6x+1
Comparing the equations with standard equation: y=mx+c, where m is the gradient of the line formed by the linear equation.
Since the gradient of the lines are different then the lines cannot be parallel and will intersent at one point.
b. The equation will have one solution as below.
The equations can be rewritten as:
5x+y=23
5x+30y=30
Subtracting both equation will result in,
29y=7
=> y=7/29
Hence x= 660/29
There are three possible cases (or scenarios) for how many solutions that an absolute value equation could have. How many solutions are there for each case? Why are their differences in the number of solutions? Give a mathematical example in your explanation.
There are three possible cases for the number of solutions to an absolute value equation:
One solution: In this case, the absolute value of the expression equals a positive number. For example, the equation |x - 3| = 5 has one solution: x = 8 or x = -2.
Two solutions: In this case, the absolute value of the expression equals zero. For example, the equation |x - 3| = 0 has two solutions: x = 3.
No solution: In this case, the absolute value of the expression equals a negative number. However, the absolute value of any expression is always non-negative, so there can be no solutions. For example, the equation |x - 3| = -2 has no solutions.
The reason why there are differences in the number of solutions is because the absolute value function takes any input and returns a non-negative output. When we set an absolute value expression equal to a number, we are essentially splitting the equation into two parts: one where the expression is positive, and one where it is negative. Depending on the value that the absolute value expression is set equal to, we may get only one of these two parts (the positive part), both of them (the zero part), or none of them (the negative part).
For example, let's consider the absolute value equation |2x - 6| = 4. To solve this equation, we can split it into two cases:
Case 1: 2x - 6 = 4. Solving for "x", we get x = 5.
Case 2: -(2x - 6) = 4. Simplifying, we get -2x + 6 = 4, which gives us x = 1.
Therefore, the equation has two solutions: x = 1 and x = 5.
Answer:
Absolute value equations can have three possible cases based on the value within the absolute value brackets:
One solution: If the value within the absolute value brackets equals zero, there is only one solution. For example, |x| = 0 has the solution x = 0.
Two solutions: If the value within the absolute value brackets is positive, there are two solutions: one positive and one negative. For example, |x| = 3 has two solutions: x = 3 and x = -3.
No solutions: If the value within the absolute value brackets is negative, there are no solutions. For example, |x| = -2 has no solution because the absolute value of any real number is non-negative.
The differences in the number of solutions depend on the nature of the equation and the value within the absolute value brackets. If the value within the absolute value brackets equals zero, there is only one solution; if it is positive, there are two solutions; and if it is negative, there are no solutions.
For example, consider the absolute value equation |x - 5| = 7. If we subtract 5 from both sides, we get |x - 5| - 5 = 7 - 5, which simplifies to |x - 5| = 2.
Since the value within the absolute value brackets is positive, we know that there are two solutions. We can solve for both solutions by setting x - 5 equal to 2 and -2:
x - 5 = 2 => x = 7 x - 5 = -2 => x = 3
Therefore, the solutions to the absolute value equation |x - 5| = 7 are x = 3 and x = 7.
So to summarize, the number of solutions for an absolute value equation depends on the value within the absolute value brackets and can be one, two or zero, depending on the nature of the equation.
Amy is single with a salary of $50,000. She has been offered a new position that will raise her salary to $53,000.
The cut-off between the 18% and 25% tax brackets is $51,250. How much will her tax liability increase if she accepts the new position?
The combined City / Highway fuel economy of a 2016 Toyota 4runner 2wd 6-cylinder 4-L automatic 5-speed using regular gas is a normally distributed random variable with a range of 21mpg to 26mpg ANSWER BOTH A AND B
a sample size of at least 73 is needed to estimate the mean of the combined City/Highway fuel economy of the 2016 Toyota 4runner 2wd 6-cylinder 4-L automatic 5-speed using regular gas with 98% confidence and an error of 0.25 mpg.
How to solve questions?
A. To estimate the standard deviation of the combined City/Highway fuel economy of the 2016 Toyota 4runner 2wd 6-cylinder 4-L automatic 5-speed using regular gas, we can use the empirical rule for normal distribution. The empirical rule states that for a normally distributed random variable, about 68% of the values fall within one standard deviation of the mean, about 95% of the values fall within two standard deviations of the mean, and about 99.7% of the values fall within three standard deviations of the mean.
The range of the combined City/Highway fuel economy of the 2016 Toyota 4runner 2wd 6-cylinder 4-L automatic 5-speed using regular gas is 21 mpg to 26 mpg. We can estimate the mean by taking the average of the range:
Mean = (21 + 26) / 2 = 23.5 mpg
We can estimate the standard deviation by using the empirical rule. Since we know that about 68% of the values fall within one standard deviation of the mean, we can estimate the standard deviation as half the range that covers about 68% of the values:
Standard Deviation ≈ (26 - 21) / 4 = 1.25 mpg
B. To find the sample size needed to estimate the mean with 98% confidence and an error of 0.25 mpg, we can use the formula for the sample size:
n = (zα/2 * σ / E)²
where:
n is the sample size
zα/2 is the z-score corresponding to the desired confidence level, which is 2.33 for 98% confidence (from the standard normal distribution table)
σ is the population standard deviation, which we estimated in part A to be 1.25 mpg
E is the desired margin of error, which is 0.25 mpg
Substituting the values, we get:
n = (2.33 * 1.25 / 0.25)²
n = 72.96
Since we cannot have a fraction of a person in our sample, we round up to the next integer and get:
n = 73
Therefore, a sample size of at least 73 is needed to estimate the mean of the combined City/Highway fuel economy of the 2016 Toyota 4runner 2wd 6-cylinder 4-L automatic 5-speed using regular gas with 98% confidence and an error of 0.25 mpg.
To know more about mean visit :-
https://brainly.com/question/1136789
#SPJ1
The bearing of F from A is 232°.
What is the bearing of A from F?
Hint: remember that co-interior angles sum to 180°.
The bearing from A to F is 38
Taylor wishes to advertise her business, so she gives packs of 13 red flyers to each restaurant owner and sets of 20 blue flyers to each clothing store owner. At the end of the day, Taylor realizes that she gave out the same number of red and blue flyers. What is the minimum number of flyers of each color she distributed?
Answer:
Let's call the number of packs of red flyers Taylor gave out "r" and the number of packs of blue flyers she gave out "b". We know that each pack contains 13 red flyers and 20 blue flyers. So the total number of red flyers is 13r and the total number of blue flyers is 20b.
We also know that Taylor gave out the same number of red and blue flyers. In other words:
13r = 20b
To find the minimum number of flyers of each color, we want to find the smallest integer values of r and b that satisfy this equation. One way to do this is to find the least common multiple (LCM) of 13 and 20, and then divide by 13 and 20 to get r and b, respectively.
The prime factorization of 13 is 13, and the prime factorization of 20 is 2 x 2 x 5. The LCM of 13 and 20 is 2 x 2 x 5 x 13 = 520.
So:
13r = 20b
13r = (13/4) x (80b)
r = (13/4) x (80b) / 13
r = 20b
We can see that r = 20b is the smallest integer value that satisfies the equation. Therefore, Taylor distributed a minimum of:
13r = 13 x 20b = 260 red flyers
20b = 20 x 20b = 400 blue flyers
So Taylor distributed a minimum of 260 red flyers and 400 blue flyers.
Answer:
Answer:
Let's call the number of packs of red flyers Taylor gave out "r" and the number of packs of blue flyers she gave out "b". We know that each pack contains 13 red flyers and 20 blue flyers. So the total number of red flyers is 13r and the total number of blue flyers is 20b.
We also know that Taylor gave out the same number of red and blue flyers. In other words:
13r = 20b
To find the minimum number of flyers of each color, we want to find the smallest integer values of r and b that satisfy this equation. One way to do this is to find the least common multiple (LCM) of 13 and 20, and then divide by 13 and 20 to get r and b, respectively.
The prime factorization of 13 is 13, and the prime factorization of 20 is 2 x 2 x 5. The LCM of 13 and 20 is 2 x 2 x 5 x 13 = 520.
So:
13r = 20b
13r = (13/4) x (80b)
r = (13/4) x (80b) / 13
r = 20b
We can see that r = 20b is the smallest integer value that satisfies the equation. Therefore, Taylor distributed a minimum of:
13r = 13 x 20b = 260 red flyers
20b = 20 x 20b = 400 blue flyers
So Taylor distributed a minimum of 260 red flyers and 400 blue flyers.
Step-by-step explanation:
proof class in college: how proove 1+1=2 and not 11
We can give the proof to class with certainty that 1+1=2 and not 11.
What is proof and theorem?A statement that has been shown to be true based on a collection of axioms or presumptions is known as a theorem. This fact can be used to support other claims using mathematics. On the other hand, a proof is a logical argument that shows a theorem or claim to be true. In other terms, a proof is the procedure used to demonstrate a theorem's validity. A theorem may be true even in the absence of a proof, but it is not regarded as established until a proof is provided.
The basic properties of arithmetic can be used to prove 1 + 1 = 2.
The symbol "+" represents addition, thus 1 + 1 represents addition of 1 with 1 which is 2.
For 11 the 1 needs to be different place values which is not possible for 1 + 1.
Hence, we can give the proof to class with certainty that 1+1=2 and not 11.
Learn more about proof here:
https://brainly.com/question/15598701
#SPJ1
Antonio ahorra en el banco 10000 soles dicho banco le ofrece pagar una tasa de interés anual del 16% convertible mensualmente¿ Cuál será la tasa efectiva que recibe Antonio?
It's important to note that the effective interest rate takes into account the Compounding effect, which means that Antonio's savings will grow faster than if the interest was only applied annually.
Antonio has saved 10,000 soles in the bank, and the bank is offering him an annual interest rate of 16% which is compounded monthly. To find out the effective interest rate that Antonio will receive, we need to calculate the annual percentage yield (APY).
The formula for APY is (1 + (interest rate/number of compounding periods))^number of compounding periods - 1.
In this case, the interest rate is 16% and the number of compounding periods is 12 (since the interest is compounded monthly). Plugging these values into the formula, we get:
APY = (1 + (0.16/12))^12 - 1
APY = 0.1728 or 17.28%
So, the effective interest rate that Antonio will receive is 17.28%. This means that at the end of the year, he will have earned 1,728 soles in interest (assuming he doesn't withdraw any money from the account). It's important to note that the effective interest rate takes into account the compounding effect, which means that Antonio's savings will grow faster than if the interest was only applied annually.
To Learn More About Compounding
https://brainly.com/question/24274034
SPJ11
Which graph is sequenced by definition by the function F(x)=3(2)x-1
Answer: Slope: 6y-intercept:(0,−1)
x= 0,1
y= -1,5
Step-by-step explanation:
Question 2 (1 point)
What are the multiplicative and additive inverses of -7?
a
multiplicative inverse 1/7; additive inverse -7
b
multiplicative inverse 1/7; additive inverse 7
c
multiplicative inverse -1/7; additive inverse -7
d
multiplicative inverse -1/7; additive inverse 7
answer is option D ,The multiplicative inverse of a number is the reciprocal of that number such that when you multiply them together, you get one. The multiplicative inverse of -7 is -1/7.
what is multiplicative inverse ?
The multiplicative inverse of a number is also known as its reciprocal. It is the number that, when multiplied by the original number, results in a product of 1. In other words, if the original number is a, then its multiplicative inverse
In the given question,
The additive inverse of a number is the opposite of that number such that when you add them together, you get zero. The additive inverse of -7 is 7.
The multiplicative inverse of a number is the reciprocal of that number such that when you multiply them together, you get one. The multiplicative inverse of -7 is -1/7.
Therefore, the correct answer is (c) multiplicative inverse -1/7; additive inverse -7.
To know more about multiplicative inverse , visit:
https://brainly.com/question/13715269
#SPJ1
Mary Lou Mason purchased baby bottles for $4.56, baby formula for $12.45, and a pacifier for $2.13. For all purchases she must pay the state sales tax of 6.5 percent and the county tax of 1.5 percent. What is the tax on her purchases? Show all of your work.
Mary Lou Mason's total taxes on her purchase would be $1.37.
What are taxes?Taxes are mandatory payments to the government that are used to fund public services such as infrastructure, education, and health care. Taxes can be direct, such as income taxes, or indirect, such as sales taxes.
Mary Lou Mason's total purchase was $19.14.
To calculate the total taxes for her purchase, we can use the following formula:
Tax = (State Sales Tax %) x (Total Purchase) + (County Tax %) x (Total Purchase)
Therefore, the total taxes for Mary Lou Mason's purchase would be:
Tax = (6.5%) x ($19.14) + (1.5%) x ($19.14)
Tax = (0.065 x 19.14) + (0.015 x 19.14)
Tax = 1.24 + 0.13
Tax = $1.37
Mary Lou Mason's total taxes on her purchase would be $1.37.
For more questions related to Sales
https://brainly.com/question/24951536
#SPJ1
Help find the area of these shapes I need 5 and 6!
Answer:
5) 120.3
6) 57
Step-by-step explanation:
5)9x8=72(area)
π(4)²=50.3(area)
total area= 72+50.3=120.3
6) 12x4=48(area)
7-4=3
12-9=3
3x3=9(area)
total area = 48+9=57
How can you eliminate the x-terms in this system?
Answer:
3 times the second equation, plus the first
Step-by-step explanation:
You want a strategy for eliminating x-terms in the system of equations ...
9x -7y = -3-3x +5y = 9EliminationYou can eliminate x-terms by making their coefficients opposites. We observe that the coefficient of x in the first equation is -3 times the coefficient of x in the second equation.
Multiplying the second equation by 3 will make the x-coefficient -9, the opposite of that in the first equation. Doing that makes the system ...
9x -7y = -3-9x +15y = 27Adding these two equations together will eliminate the x-terms:
(9x -7y) +(-9x +15y) = (-3) +(27)
8y = 24 . . . . . . . simplify; x-terms are gone
You can eliminate x-terms by multiplying the second equation by 3, then adding the two equations together.
X is a normal random variable with E[X] = -3 and V[X] = 4, compute a) ( ≤ 2.39) b) ( ≥ −2.39) c) (|| ≥ 2.39) d) (| + 3| ≥ 2.39) e) ( < 5) f) (|| < 5) g) With probability 0.33, variable X exceeds what value?
P(X ≤ 2.39)= 0.9967, P(X ≥ -2.39) = 0.3808, P(|X| ≥ 2.39) = 0.0388 ,P(|X + 3| ≥ 2.39) can be rewritten as P(X + 3 ≤ -2.39) + P(X + 3 ≥ 2.39)= 0.0388, P(X < 5) = 1 AND P(|X| < 5) = 0.34 with X is a normal random variable .
To solve the given problems, we need to standardize the normal random variable X using the formula Z = (X - μ)/σ, where μ is the mean and σ is the standard deviation.
a) P(X ≤ 2.39) = P(Z ≤ (2.39 - (-3))/2) = P(Z ≤ 2.695) = 0.9967
b) P(X ≥ -2.39) = P(Z ≥ (-2.39 - (-3))/2) = P(Z ≥ 0.305) = 0.3808
c) P(|X| ≥ 2.39) = P(X ≤ -2.39) + P(X ≥ 2.39) = P(Z ≤ (-2.39 - (-3))/2) + P(Z ≥ (2.39 - (-3))/2) = P(Z ≤ -1.805) + P(Z ≥ 2.695) = 0.0354 + 0.0034 = 0.0388
d) P(|X + 3| ≥ 2.39) can be rewritten as P(X + 3 ≤ -2.39) + P(X + 3 ≥ 2.39)
= P(Z ≤ (-2.39 - (-3))/2) + P(Z ≥ (2.39 - (-3))/2) = P(Z ≤ -1.805) + P(Z ≥ 2.695) = 0.0354 + 0.0034 = 0.0388
e) P(X < 5) = P(Z < (5 - (-3))/2) = P(Z < 4) = 1
f) P(|X| < 5) = P(-5 < X < 5) = P((-5 - (-3))/2 < Z < (5 - (-3))/2) = P(-4 < Z < 4) = 0.9987
g) Let the value that X exceeds with a probability of 0.33 be x. Then, we need to find the value of x such that P(X > x) = 0.33. Using the standard normal distribution table, we can find that the z-score for the 0.33 probability is 0.44. So, we can solve for x as follows:
0.33 = P(X > x) = P(Z > (x - (-3))/2) = P(Z > (x + 3)/2)
0.44 = 1 - P(Z ≤ (x + 3)/2)
P(Z ≤ (x + 3)/2) = 1 - 0.44 = 0.56
Using the standard normal distribution table, we can find that the z-score for the 0.56 probability is 0.17. So, we can solve for x as follows:
0.56 = P(Z ≤ (x + 3)/2) = P(Z ≤ (x + 3)/2)
0.17 = (x + 3)/2
x = 0.34
Therefore, with a probability of 0.33, variable X exceeds the value of 0.34.
To know more about normal random variable . click here:
brainly.com/question/14782203
#SPJ1
Write an equation for the quadratic graphed below
The equation of the given quadratic equation through which it satisfied the relation are y =
What about quadratic equation?
In mathematics, a quadratic equation is a polynomial equation of the second degree, meaning it has the highest power of the variable x as 2. The standard form of a quadratic equation is:
ax^2 + bx + c = 0
where a, b, and c are constants, and x is the variable. The coefficient a cannot be zero, or else the equation would reduce to a linear equation.
The quadratic equation can be solved using the quadratic formula:
x = [tex]( b + \sqrt{(b^2 - 4ac)) / 2a[/tex]
where the ± sign means that there are two possible solutions for x, one obtained by adding the square root term and the other obtained by subtracting it.
The solutions of a quadratic equation may be real or complex numbers, depending on the discriminant (b^2 - 4ac) of the equation. If the discriminant is positive, the equation has two real solutions. If the discriminant is zero, the equation has one real solution (which is a double root). And if the discriminant is negative, the equation has two complex solutions (which are conjugates of each other).
Quadratic equations are used in various branches of mathematics and physics to model a wide range of phenomena, such as motion, acceleration, gravity, and electromagnetic fields.
According to the given information:
The normal form of the equation are y = [tex]a(x-h)^{2} + k[/tex]
(h,k) = ( -1,2)
When we put the value in the equation we have that,
y = [tex]a(x+1)^{2} + 2[/tex]
As, we see it intercept at (-2,0)
y = 0 and x = -2
0 = [tex]a(-2+1)^{2} + 2[/tex]
a = -2
So y = [tex]-2(x+1)^{2} + 2[/tex]
To know more about quadratic visit:
https://brainly.com/question/19037377
#SPJ1
pls help me i need an answer
The first statement given is not a random sample because athletes leaving practice are not representative of all athletes.
"Athletes leaving practice are asked what their favorite sport is". Is this sampling a random sample or not?A random sample is a sample in which every member of the population being studied has an equal chance of being selected. In the given statement, the sample is not random because the athletes leaving practice are not representative of all athletes, as they may have different preferences or levels of skill in their favorite sport.
Additionally, the sample is not chosen through a random selection process, but rather through a convenience sampling method, in which participants are chosen based on their availability and willingness to participate.
Read more about random sample
brainly.com/question/24466382
#SPJ1
help please im so lost
Volume of given two cylinders are 115.52π m³ and 350π in³
What is the formula for the volume of a cylinder?
[tex]V = π {r}^{2} h[/tex]
where r is the radius of the cylinder, h is the height of the cylinder, and π is a constant approximately equal to 3.14.
4) Given, radius =3.8 m and height = 8 m
Substituting the given values into the formula, we get:
[tex]V = π × (3.8)^2 × 8 \\ V = 115.52\pi \: cubic \: meters[/tex]
Therefore, the volume of the cylinder is approximately 361.984 cubic meters.
5) Given, radius = 5 in and height = 14 in
Substituting the given values:
[tex]V = π(5²)(14) \\ V = π(25)(14) \\ V = 350π[/tex]
Therefore, the volume of the cylinder is 350π cubic in (or approximately 1099.56 cubic meters if you want to use a numerical approximation for π).
Volume related one more question:
https://brainly.com/question/463363
#SPJ1
You are a new parent and would like to have $100,000 saved for your child’s college
education 18 years from now.
a. How much would you need to invest each year, starting now, to reach your goal
assuming 5% continuous annual interest?
b. What is the present value of that $100,000 when your child is born?
a. You would need to invest approximately $3,436.76 each year, starting now, to reach your goal of $100,000
b. The present value of $100,000 when your child is born is $100,000.
What is Compound Interest?Compound interest is interest that is calculated on the initial principal and also on the accumulated interest of previous periods. This results in exponential growth of the investment over time.
a. To calculate the amount that needs to be invested each year, we can use the formula for the future value of an annuity:
[tex]FV = PMT*((1 + r)^n - 1)/r[/tex]
where FV is the future value, PMT is the annual payment, r is the interest rate per period (which is 5% in this case), and n is the number of periods (which is 18 years).
Plugging in the values, we get:
$100,000 = PMT*((1 + 0.05)^18 - 1)/0.05
Solving for PMT, we get:
PMT = $3,436.76
Therefore, you would need to invest approximately $3,436.76 each year, starting now, to reach your goal of $100,000 for your child's college education in 18 years, assuming continuous compounding at a 5% annual interest rate.
b. To calculate the present value of $100,000 when your child is born, we need to discount it back to the present time using the formula:[tex]PV = FV/(1 + r)^n[/tex]
where PV is the present value, FV is the future value ($100,000), r is the interest rate per period (which is 5%), and n is the number of periods (which is 0 since the money is being received now).
Plugging in the values, we get:
PV = $100,000/(1 + 0.05)^0
Solving for PV, we get:
PV = $100,000
Therefore, the present value of $100,000 when your child is born is $100,000.
To learn more about Compound Interest from the given link
https://brainly.com/question/28020457
#SPJ1
Complete the Proof.
Given: ∠EAD ≅ ∠EBC; AD- ≅ BC-
Prove: CE- ≅ DE-
STATEMENTS
1. ∠EAD ≅ ∠EBC
2. ∠AEB ≅ ∠AEB
3. AD- ≅ BC-
4. ∆AED ≅ ∆BEC
5. CE- ≅ DE-
REASONS
1. Given
2. ___
3. Given
4. AAS
5. ___
1. ∠EAD ≅ ∠EBC (Given) 2. ∠AEB ≅ ∠AEB (Common angle) 3. AD- ≅ BC- (Given) 4. ∆AED ≅ ∆BEC (AAS) 5. CE- ≅ DE- (CPCT)
What is CPCT?According to the concept of corresponding parts of congruent triangles, or cpct, corresponding sides and corresponding angles of two congruent triangles are identical. The corresponding sides and angles of two triangles that are congruent to one another according to any of the following principles of congruency must be equal. When the corresponding sides and corresponding angles of two triangles are the same, two triangles are said to be congruent.
In the given figure given that, ∠EAD ≅ ∠EBC; AD- ≅ BC.
Thus,
1. ∠EAD ≅ ∠EBC (Given)
2. ∠AEB ≅ ∠AEB (Common angle)
3. AD- ≅ BC- (Given)
4. ∆AED ≅ ∆BEC (AAS)
5. CE- ≅ DE- (CPCT)
Learn more about CPCT here:
https://brainly.com/question/29790460
#SPJ1
A LITTER OF STAIN COVERS 100 SQUARES HOW MANY FEET LITTER SHOULD YOU BUY TO STAIN THE WHEEL CHAIR RAMP?
You would need to buy 4 liters of stain to cover a wheelchair ramp with an area of 100 square feet.
Dimensional analysisThe answer to this question depends on the dimensions of the wheelchair ramp and how much area needs to be covered with stain.
Assuming that the wheelchair ramp has an area of 100 square feet, and that the stain coverage is similar to the area covered by paint, then the amount of stain required can be estimated by using the following formula:
Amount of stain (in liters) = Area to be covered (in square feet) ÷ Coverage per liter (in square feet per liter)
If the stain coverage is 25 square feet per liter, then the amount of stain required to cover 100 square feet would be:
Amount of stain = 100 ÷ 25 = 4 liters
Therefore, you would need to buy 4 liters of stain to cover a wheelchair ramp with an area of 100 square feet.
More on dimensional analysis can be found here: https://brainly.com/question/30303546
#SPJ1