Explanation :
The empirical formula of a hydrocarbon is C3H8 when 60.68 g are combusted in the presence of oxygen and produce 89.12 g of CO2 and 36.48 g of H2O.
The empirical formula of a compound represents the simplest ratio of atoms present in a compound. We are given that a hydrocarbon is burned and is producing carbon dioxide and water.
Therefore, the following reaction takes place:
CxHy + O2 → CO2 + H2O
We are given the mass of the hydrocarbon and the products produced. We have to calculate the empirical formula of the compound using the following steps:
First,
We have to find the moles of CO2 and H2O produced.Using the molar mass of CO2 = 44 g/molNumber of moles of CO2 produced = 89.12/44 = 2.02 molUsing the molar mass of H2O = 18 g/molNumber of moles of H2O produced = 36.48/18 = 2.03 molSecondly,
We need to determine the number of moles of C and H atoms present in the compound.Thirdly,
We need to convert the number of moles of each element to whole numbers by dividing by the smallest number of moles.Number of moles of C/0.67 = 2.02/0.67 = 3 Number of moles of H/0.67 = 4.06/0.67 = 6Therefore, the empirical formula of the compound is C3H8.
To know more about the empirical formula https://brainly.com/question/14044066
#SPJ11
a mixture of 2.00 moles of h2, 3.0 moles of nh3 and 4.00 moles of co2 and 5.00 moles of n2 exerts a total pressure of 800 torr. what is the partial pressure of each gas?
The partial pressure of H in the mixture is 160 torr, 240 torr, 320 torr, and 400 torr, respectively.
The total pressure of the mixture is 800 torr. To calculate the partial pressure of each gas, you will need to use the ideal gas law equation, PV = nRT, where P is the pressure of the gas, V is the volume, n is the number of moles, R is the universal gas constant, and T is the temperature.
Since the total pressure is constant, the equation can be rearranged as follows:
P1 = (n1/ntotal) x Ptotal = (n1/ntotal) x 800 torr.
Using this formula, we can calculate the partial pressure of each gas in the mixture:
Partial pressure of H2 = (2.00 moles / (2.00 + 3.00 + 4.00 + 5.00)) x 800 torr = 160 torrPartial pressure of NH3 = (3.00 moles / (2.00 + 3.00 + 4.00 + 5.00)) x 800 torr = 240 torrPartial pressure of CO2 = (4.00 moles / (2.00 + 3.00 + 4.00 + 5.00)) x 800 torr = 320 torrPartial pressure of N2 = (5.00 moles / (2.00 + 3.00 + 4.00 + 5.00)) x 800 torr = 400 torr
Therefore, the partial pressure of H in the mixture is 160 torr, 240 torr, 320 torr, and 400 torr, respectively.
To know more about partial pressure click here:
https://brainly.com/question/13199169
#SPJ11
how many grams of h2o will be formed when 32.0 g h2 is mixed with 12.0 g of o2 and allowed to react to form water?
When 32.0 g of H2 and 12.0 g of O2 are mixed and allowed to react to form water, the end result will be 44.0 g of H2O.
This is because the equation for the reaction is 2H2 + O2 = 2H2O, so for every two grams of H2 that are present, one gram of O2 must be present to balance the equation. Therefore, 32.0 g of H2 and 12.0 g of O2 will result in 44.0 g of H2O.
To solve this problem, first calculate the amount of H2 and O2 needed to create the desired amount of H2O. Using the equation, the ratio of H2 to O2 is 2:1, so the total amount of O2 needed to react with the given amount of H2 is 16.0 g (32.0 g of H2 divided by 2). Next, calculate the amount of H2O that will be produced. To do this, use the equation 2H2 + O2 = 2H2O, so the total amount of H2O produced is twice the amount of H2 and O2, or 44.0 g (32.0 g of H2 + 16.0 g of O2 = 48.0 g, then divided by 2 = 24.0 g).
Therefore, when 32.0 g of H2 and 12.0 g of O2 are mixed and allowed to react to form water, the end result will be 44.0 g of H2O.
For more such questions on H2O
https://brainly.com/question/26709403
#SPJ11
How many atoms are in 32.10 g of He
4.83 x 10^24 atoms are there in 32.10 g of He.
To determine the number of atoms in 32.10 g of He, we first need to convert the mass to moles using the atomic mass of He, which is 4.003 g/mol.
number of moles of He = 32.10 g / 4.003 g/mol = 8.024 mol He
Next, we use Avogadro's number, which is 6.022 x 10^23 atoms/mol, to calculate the number of atoms in 8.024 mol of He:
8.024 mol He x 6.022 x 10^23 atoms/mol = 4.83 x 10^24 atoms
Therefore, there are approximately 4.83 x 10^24 atoms in 32.10 g of He.
Atoms are the fundamental matter units that comprise everything around us, from the air we breathe to the food we consume. They are made up of three different sorts of particles: protons, neutrons, and electrons.
For more such questions on atoms, click on:
https://brainly.com/question/6258301
#SPJ11
a compound contains 76.6% C, 6.38% H and 17.0% O. Which of the following is the correct empirical formula for the compound?
For a compound containing 76.6% C, 6.38% H and 17.0% O. The correct empirical formula is C6H6O. Option A is the answer.
The empirical formula calculationTo determine the empirical formula of a compound, we need to find the simplest whole-number ratio of the atoms present in the compound.
To do this, we can assume a 100 g sample of the compound, which means we have 76.6 g C, 6.38 g H, and 17.0 g O.
Next, we need to convert the masses to moles using the atomic masses of the elements:
Carbon (C): 12.01 g/mol
Hydrogen (H): 1.008 g/mol
Oxygen (O): 16.00 g/mol
Moles of C = 76.6 g / 12.01 g/mol ≈ 6.38 mol
Moles of H = 6.38 g / 1.008 g/mol ≈ 6.33 mol
Moles of O = 17.0 g / 16.00 g/mol ≈ 1.06 mol
We then divide each number of moles by the smallest number of moles to get the simplest whole-number ratio:
C: 6.38 mol / 1.06 mol ≈ 6
H: 6.33 mol / 1.06 mol ≈ 6
O: 1.06 mol / 1.06 mol = 1
The empirical formula of the compound is therefore C6H6O.
Learn more on empirical formula here https://brainly.com/question/1603500
#SPJ1
A compound contains 76.6% C, 6.38% H and 17.0% O. Which is the correct empirical formula?
C6H6O
C2H2O
C4H4O
CH2O
if 166 kj of energy is required to decompose 93.5 g caco3, what is the molar enthalpy of decomposition?
The molar enthalpy of decomposition for [tex]CaCO_3[/tex] is 166 kJ.
The molar enthalpy of decomposition can be calculated by dividing the amount of energy by the number of moles of [tex]CaCO_3[/tex].
Let's find the number of moles first.
Number of moles of [tex]CaCO_3[/tex]
m = mass / molar mass
m = 93.5 g / (40.08 g/mol + 12.01 g/mol + 3 × 16.00 g/mol)
m = 93.5 g / 100.09 g/mol
m = 0.934 mol
The molar enthalpy of decomposition can be calculated using the formula:
Molar enthalpy of decomposition = Energy change / Number of moles
Molar enthalpy of decomposition = 166 kJ / 0.934 mol
The molar enthalpy of decomposition = 177.65 kJ/mol
Therefore, the molar enthalpy of the decomposition of [tex]CaCO_3[/tex] is 177.65 kJ/mol.
To learn more about molar enthalpy of decomposition refer -https://brainly.com/question/3207013
#SPJ11
a vessel contains 112 1 2 l of milk. john drinks 14 1 4 l of milk; joe drinks 12 1 2 l of milk. how much of milk is left in the vessel?
There is 73 3/4 liters of milk left in the vessel.
John drank 14 1/4 liters of milk and Joe drank 12 1/2 liters of milk. This means that a total of 26 3/4 liters of milk was consumed from the vessel. 112 1/2 liters of milk was the total amount of milk in the vessel, so if we subtract the 26 3/4 liters that was consumed from the vessel, we can calculate the remaining amount of milk left in the vessel.
Calculate the total amount of milk that was consumed.
John drank 14 1/4 liters of milk and Joe drank 12 1/2 liters of milk. This means that a total of 26 3/4 liters of milk was consumed from the vessel.
Calculate the amount of milk left in the vessel.
The total amount of milk in the vessel was 112 1/2 liters. If we subtract the 26 3/4 liters that was consumed from the vessel, we can calculate the remaining amount of milk left in the vessel: 112 1/2 liters - 26 3/4 liters = 73 3/4 liters.
In this problem, we needed to calculate the amount of milk left in the vessel after two people drank from it. We did this by first calculating the total amount of milk that was consumed (John drank 14 1/4 liters of milk and Joe drank 12 1/2 liters of milk). Then, we calculated the remaining amount of milk left in the vessel by subtracting the amount of milk consumed from the total amount of milk in the vessel (112 1/2 liters - 26 3/4 liters = 73 3/4 liters).
To know more about diluted milk click on below link :
https://brainly.com/question/30203634#
#SPJ11
if molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy which molecule will be moving the fastest? a) hydrogen b) nitrogen c) oxygen d) chlorine e) all molecules will have the same speed.
The answer to the question is "e) all molecules will have the same speed." This is because all molecules, regardless of what elements they are made up of, have the same kinetic energy, so they will be moving at the same speed.
To better understand this concept, it is important to note that kinetic energy is the energy of an object due to its motion. Kinetic energy is determined by the mass and speed of the object, with the equation being KE = 1/2 x m x v^2 (where m is the mass and v is the velocity). So, if two objects have the same kinetic energy, they must have the same velocity, regardless of their mass.
As all molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy, they must also have the same velocity, meaning that all molecules will be moving at the same speed. This is because the molecules' masses differ, but as the kinetic energy is the same, the velocity must be the same as well.
It is also important to note that kinetic energy is not the same as momentum. Momentum is determined by the mass and velocity of an object, but is not dependent on the kinetic energy of the object. So, while all molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy, they may still have different momentum, due to their different masses.
In conclusion, all molecules of hydrogen, nitrogen, oxygen and chlorine will have the same speed, as they all have the same kinetic energy.
Learn more about Kinetic energy here:
https://brainly.com/question/15764612#
#SPJ11
how do you tell if the ether solution is dry after the addition of calcium chloride? in grignard reactio
Answer:
To determine if the ether solution is dry after the addition of calcium chloride in Grignard reactions, a method called the spot test is used.
The spot test involves withdrawing a sample of the ether layer using a pipette and putting it on a piece of filter paper. If the spot left on the filter paper is not displaced by the addition of a drop of water, the ether solution is considered dry.
The reaction of Grignard, a reaction involving the organometallic compound formed by the addition of magnesium to a halogenated hydrocarbon in ether solution, is a very significant reaction in organic chemistry. The addition of calcium chloride to the ether solution is done to dry the solution before the addition of the Grignard reagent.
The reaction of Grignard is the addition of the organometallic compound to a carbonyl or related functional group in a molecule, resulting in the formation of an alcohol. The alcohol produced from the reaction of Grignard can either be a primary, secondary or tertiary alcohol depending on the carbonyl or related functional group present in the molecule.
Learn more about spot test here:
https://brainly.com/question/29318105#
#SPJ11
which of the following are safety concerns specific for the experiment, calorimetry? one or more answers may be correct and you will receive negative points for incorrect answers. group of answer choices
Safety precautions to be taken while performing the calorimetry experiment, some safety precautions are necessary, such as the following : -
1. In calorimetry experiments, extreme caution should be taken when using open flames or heat sources such as bunsen burners, which may cause burns or other accidents.
2. During experiments, safety glasses or goggles must be worn at all times to prevent chemical splashes from entering the eyes.
3. When handling any chemicals, be sure to wash your hands thoroughly before and after handling them to prevent any potential exposure or cross-contamination.
4. Always double-check the correct usage of the calorimeter and its components before proceeding with the experiment.
5. The calorimeter should not be kept near the edge of the bench or work surface to avoid unintentional falls or damage to the instrument.
6. A well-ventilated area should be chosen for the experiment because some chemicals may produce fumes or gases.
Calorimetry is a method of determining the amount of heat released or absorbed by a reaction in question. In this experiment.
Know more about Calorimetry here:
https://brainly.com/question/11477213
#SPJ11
what is the substance undergoing a chemical or physical change known as?
The substance undergoing a chemical or physical change is called a reactant. Reactants are starting materials that participate in a chemical reaction, which can result in the formation of new chemical compounds or changes in the physical properties of the substances involved.
In a physical change, the reactants retain their chemical identity, but undergo a change in their physical state or properties, such as melting, freezing, boiling, or changing color. In a chemical change, the reactants undergo a chemical reaction that results in the formation of new chemical compounds, breaking of chemical bonds, or release of energy. Understanding the properties and behavior of reactants is crucial in predicting and controlling chemical reactions in various fields, from materials science to biochemistry.
To know more about Reactants, here
brainly.com/question/17096236
#SPJ4
if 4.36 mol of potassium phosphate react, how many grams of barium phosphate are produced?
If 39.5 g AlCl3 is produced, how many grams of HCl was used in the reaction?
Answer:
400.87g of barium phosphate and 32.4g of HCL
Explanation:
The balanced chemical equation for the reaction between potassium phosphate and barium nitrate is:
3 K3PO4 + 4 Ba(NO3)2 → 12 KNO3 + Ba3(PO4)2
According to the stoichiometry of the equation, for every 3 moles of potassium phosphate, 1 mole of barium phosphate is produced. Therefore:
1 mol Ba3(PO4)2 = 3 mol K3PO4
To convert the given quantity of potassium phosphate to moles, we can use its molar mass:
4.36 mol K3PO4 = 4.36 mol × 212.27 g/mol = 925.5912 g
Now we can use the stoichiometry to calculate the amount of barium phosphate produced:
1 mol Ba3(PO4)2 = 3 mol K3PO4
1 mol Ba3(PO4)2 = 3/4 mol Ba(NO3)2 (from the balanced equation)
Therefore, the amount of barium phosphate produced is:
4.36 mol K3PO4 × 1 mol Ba3(PO4)2 / 3 mol K3PO4 × 4 mol Ba(NO3)2 / 3 mol Ba3(PO4)2 × 601.93 g/mol Ba3(PO4)2 = 400.87 g
Therefore, 400.87 grams of barium phosphate are produced.
We need to know the balanced chemical equation for the reaction in order to determine the stoichiometry of the reactants and products. Let's assume that the reaction is:
2 Al + 6 HCl → 2 AlCl3 + 3 H2
This equation tells us that 6 moles of HCl are required to produce 2 moles of AlCl3. The molar mass of AlCl3 is:
1 Al atom × 26.98 g/mol + 3 Cl atoms × 35.45 g/mol = 133.34 g/mol
Therefore, 39.5 g of AlCl3 represents:
39.5 g ÷ 133.34 g/mol = 0.296 moles of AlCl3
Since the reaction produces 2 moles of AlCl3 for every 6 moles of HCl, we can use a ratio to find the number of moles of HCl required:
0.296 moles AlCl3 × (6 moles HCl / 2 moles AlCl3) = 0.888 moles HCl
Finally, we can convert the number of moles of HCl to grams:
0.888 moles HCl × 36.46 g/mol = 32.4 g HCl
Therefore, 32.4 g of HCl was used in the reaction.
what is resonance effect?
Answer:
Resonance effect is a chemical phenomenon that occurs when electrons in a molecule are delocalized or spread out over multiple atoms or bonds. This results in the stabilization of the molecule and can affect its reactivity and properties. Resonance occurs when there are multiple ways to draw the Lewis structure of a molecule, and each structure contributes to the overall electronic structure of the molecule. The resonance effect is commonly observed in organic chemistry, where it can influence the acidity or basicity of a molecule, as well as its stability and reactivity in chemical reactions.
a certain organic compound contains only c, h, and o. combustion of 0.1000 g of this compound produced 0.2921 g of co2 and 0.0951 g of h2o. what is the empirical formula of the compound?
The empirical formula of the organic compound is C1H1O1 and the simplified form is CHO.
To find the empirical formula of the compound, we need to determine the mole ratios of the elements in the compound.
First, we need to find the number of moles of CO2 and H2O produced by the combustion of 0.1000 g of the compound:
moles of CO2 = 0.2921 g / 44.01 g/mol = 0.006639 mol
moles of H2O = 0.0951 g / 18.02 g/mol = 0.005275 mol
Next, we need to find the number of moles of C and H in the compound. From the combustion reactions, we know that all of the carbon in the compound is converted to CO2, and all of the hydrogens are converted to H2O.
Therefore, the number of moles of C and H in the compound is equal to the number of moles of CO2 and H2O produced, respectively:
moles of C = 0.006639 mol
moles of H = 0.005275 mol
Finally, we need to find the number of moles of O in the compound. We can do this by subtracting the number of moles of C and H from the total number of moles of elements in the compound, which is equal to the mass of the compound divided by its molar mass:
moles of O = (0.1000 g / molar mass of compound) - moles of C - moles of H
The molar mass of the compound is equal to the sum of the molar masses of its constituent elements:
molar mass of compound = molar mass of C + molar mass of H + molar mass of O
Since we don't know the formula of the compound yet, we can assume a generic formula of CxHyOz and calculate the molar mass of this compound as:
molar mass of compound = x(molar mass of C) + y(molar mass of H) + z(molar mass of O)
Using the atomic masses of C, H, and O, we can calculate the molar masses of these elements as:
molar mass of C = 12.01 g/mol
molar mass of H = 1.01 g/mol
molar mass of O = 16.00 g/mol
Substituting these values, we get:
molar mass of compound = 12.01x + 1.01y + 16.00z
Now, we can solve for the number of moles of O in the compound:
moles of O = (0.1000 g / molar mass of compound) - moles of C - moles of H
Substituting the values we found earlier for moles of C and H, we get:
moles of O = (0.1000 g / (12.01x + 1.01y + 16.00z)) - 0.006639 mol - 0.005275 mol
Simplifying, we get:
moles of O = 0.1000 g / (12.01x + 1.01y + 16.00z) - 0.011914 mol
To determine the empirical formula of the compound, we need to find the smallest whole number mole ratio of the elements in the compound. We can do this by dividing the number of moles of each element by the smallest number of moles:
moles of C / 0.005275 = 1.259
moles of H / 0.005275 = 1.000
moles of O / 0.005275 = (0.1000 g / (12.01x + 1.01y + 16.00z) - 0.011914 mol) / 0.005275
Simplifying, we get:
moles of O / 0.005275 = 18.998 - (1.258x + y)
To find the smallest whole number ratio, we can multiply each mole ratio by a common factor that makes the smallest ratio a whole number. In this case, the smallest ratio is 1:1, so we can multiply each ratio by a factor of approximately 0.79 to make the C and H ratios both equal to 1. This gives us:
C: 1.000
H: 0.790
O: 1.484
Since we want whole numbers, we can round these ratios to the nearest whole number, giving us the empirical formula: C1H1O1 or simply CHO.
Learn more about empirical formulas at
https://brainly.com/question/14044066
#SPJ4
at the same temperature, water vapor molecules have the same average kinetic energy as the heavier nitrogen and oxygen molecules in the air. why does sound travel faster in moist air? in other words, how do the average speeds of h2o molecules compare with those of n2 and o2 molecules?
The same temperature of water vapor and nitrogen and oxygen molecules have the same average kinetic energy, and the lighter water vapor molecules have higher velocities,
which is why sound travels faster in moist air than in dry air.
The average speed of the water vapor molecules is also much higher than the average speed of the nitrogen and oxygen molecules.
At the same temperature, the average kinetic energy of water vapor molecules is the same as the heavier nitrogen and oxygen molecules in the air.
This is due to the fact that the average kinetic energy of a gas is directly proportional to the absolute temperature of the gas.
Therefore, since both gases are at the same temperature, they have the same average kinetic energy.
The reason why sound travels faster in moist air is because the water vapor molecules are lighter than the nitrogen and oxygen molecules, which means that they have less mass and higher velocities.
As a result, sound waves that pass through the moist air travel faster than those through dry air because the faster moving water molecules create less resistance for the sound waves.
This is why sound travels faster in moist air than in dry air.
In terms of average speeds, the average speed of water vapor molecules is much higher than the average speed of nitrogen and oxygen molecules.
This is because the lighter water vapor molecules have less mass, which allows them to move faster.
On the other hand, the heavier nitrogen and oxygen molecules have more mass, which means that they move more slowly.
To know more about kinetic energy refer here:
https://brainly.com/question/26472013#
#SPJ11
which product, related to coal formation, is a result of metamorphism? group of answer choices peat bituminous coal anthracite lignite
The product related to coal formation that is a result of metamorphism is anthracite.
Metamorphism of coal causes it to become more compressed and increase in carbon content. This results in anthracite, which is the highest rank of coal.
Metamorphism is a process of transforming sedimentary rock, including coal, through exposure to intense heat and pressure. This process causes the coal to become more compressed, which increases its carbon content. The highest rank of coal is anthracite, which is the product of metamorphism.
To know more about metamorphism click on below link :
https://brainly.com/question/1366827#
#SPJ11
(d) write the ground-state electron configuration of an atom of the element that you identified in part (c).
The ground state electron configuration of an atom of the element identified in the mass spectrometer results is 1s²2s²2p⁶3s².
The sample of the pure element that is analyzed using a mass spectrometer shows the following results:
Bar one: amu 24 and percent abundance just below 80.
Bar 2: amu 25 and percent abundance 10
Bar 3: amu 26 and percent abundance just above 10.
The ground-state electron configuration of an atom of the element that is identified in part c is as follows:
The mass number of the element is the weighted average of the isotopic masses, and it is calculated by adding the product of each isotope's atomic mass and its percent abundance. The calculation for the above-given values is shown below:
(24 amu × 0.79) + (25 amu × 0.10) + (26 amu × 0.11) = 24.33 amu
Since the mass number of the element is closer to 24 than to 25, it is reasonable to believe that the element is magnesium (Mg). The atomic number of magnesium is 12. Therefore, its electron configuration in the ground state is 1s²2s²2p⁶3s².
Hence, the ground-state electron configuration of an atom of the element that you identified in part c is 1s²2s²2p⁶3s².
Complete answer:
A sample of a pure element is anylazed using a mass spectrometer. The results are shown below.
Bar one: amu 24 and percent abundance just below 80.
Bar 2: amu 25 and percent abundance 10
Bar 3: amu 26 and percent abundance just above 10.
Write the ground-state electron configuration of an atom of the element that you identified in part c.
Learn more about electron configuration at https://brainly.com/question/26084288
#SPJ11
which of the following could be the direct product obtained from dehydration of an alcohol?multiple choice question.structure astructure bstructure dstructure c
The direct product obtained from dehydration of an alcohol is an alkene. (A)
Alkenes are hydrocarbons composed of a double bond between two carbon atoms. The dehydration of an alcohol involves the removal of a water molecule from two hydrogen atoms and an oxygen atom in the alcohol. (A)
This produces an alkene with an alkyl group attached to each carbon atom in the double bond.
A dehydration reaction involves the removal of a molecule of water from a compound. In the case of an alcohol, this typically involves the removal of the hydroxyl (-OH) group and a hydrogen atom from adjacent carbon atoms.
The resulting molecule is an alkene, which contains a double bond between the two carbon atoms that were previously bonded to the -OH group and the hydrogen atom.
To know more about dehydration click on below link:
https://brainly.com/question/12261974#
#SPJ11
complete question
which of the following could be the direct product obtained from dehydration of an alcohol.
A) Alkene
B) Alkane
C) Alkyne
D) Ketone
which of the following labels are used for quantum numbers to describe the state of an electron inside an atom? select all that apply. select all that apply: l m mo ms
The labels that are used for quantum numbers to describe the state of an electron inside an atom are l, m, and ms.
Quantum numbers are a set of four numbers that describe the specific properties of electrons in an atom. These numbers help us to determine the behavior and properties of an electron in the atom.
There are four quantum numbers, such as:
Principal Quantum Number (n) - The Principal Quantum Number (n) is the quantum number that describes the shell or energy level of an electron in an atom. It tells us about the average energy of an electron in the atom.Azimuthal Quantum Number (l) - The Azimuthal Quantum Number (l) is the quantum number that describes the subshell of an electron in an atom. It is also called Angular Momentum Quantum Number.Magnetic Quantum Number (m) - The Magnetic Quantum Number (m) is the quantum number that describes the orientation of an electron in an atom. It gives information about the number of orbitals in the subshell and the number of possible values of m.Spin Quantum Number (ms) - The Spin Quantum Number (ms) is the quantum number that describes the spin of an electron in an atom. It gives information about the direction of the spin of the electron. It can have two values (+½ and -½).Therefore l, m, and ms are the quantum numbers that describe the state of an electron inside an atom.
To know more about quantum numbers click here:
https://brainly.com/question/16977590
#SPJ11
a patient is to receive 1 l of pn solution at 75 ml/hr. what is the rate in gtt/min if the drop set used is 20 gtt/ml?
A patient is to receive 1 l of PN solution at 75 ml/hr. The flow rate in gtt/min if the drop set used is 20 gtt/ml is 3.75 gtt/min.
What is PN solution?A PN solution is a type of electrolyte solution composed of a mixture of positive and negative ions. Such solutions are often used in various applications, such as electroplating, batteries, corrosion protection and water purification. This type of solution is also used in laboratories for chemical/electrolytic reactions.
What are electrolyte solutions?Electrolyte solutions are solutions that contain ions and can be electrically conductive. Examples of electrolyte solutions include saltwater, acids, bases, and other dissolved substances. When an electrolyte solution is placed in an electric field, the ions will be attracted to the electrodes and form a conductive path for the electric current to flow through the solution.
This is calculated by taking 75 ml/hr (which is 750 ml/hr for simplicity) and dividing it by 20 gtt/ml, which gives us 37.5 gtt/hr.
To get the rate in gtt/min, we then take 37.5 gtt/hr and divide it by 60 minutes, which gives us 3.75 gtt/min.
To know more about Flow rate, visit:
https://brainly.com/question/27880305
#SPJ1
how many ml of 0.1125 m ca(oh)2 is required to reach the end-point in the titration of a solution containing 25 ml of 0.0846 m acetic acid (ch3cooh)?
28.42 mL of 0.1125 M Ca(OH)₂ is required to reach the end-point in the titration of a solution containing 25 mL of 0.0846 M acetic acid (CH₃COOH)
Calculating the molarity of calcium hydroxide (Ca(OH)₂) needed to reach the endpoint in the titration.
This can be done using the equation:
M1V1 = M2V2,
where M1 and V1 are the molarity and volume of acetic acid (CH₃COOH), and
M2 and V2 are the molarity and volume of calcium hydroxide (Ca(OH)₂) needed to reach the endpoint.
Using the information given in the question, we can solve for V2:
0.0846 M CH₃COOH x 25 mL = 0.1125 M Ca(OH)₂ x V2
V2 = 25 mL x 0.1125 M Ca(OH)2 / 0.0846 M CH₃COOH
V2 = 28.42 mL
Therefore, 28.42 mL of 0.1125 M Ca(OH)₂ is required to reach the end-point in the titration of a solution containing 25 mL of 0.0846 M acetic acid (CH₃COOH).
Learn more about titration here:
https://brainly.com/question/186765
#SPJ11
why is the response to a temperature change as a stress in a chemical reaction different from the response to a change in concentration?
The response to a temperature change as a stress in a chemical reaction is different from the response to a change in concentration because temperature affects the rate of the reaction
Temperature: Temperature affects the rate of a reaction by increasing the number of molecules with enough energy to react. As the temperature rises, molecules move faster, collide more often and with more energy, and react more frequently. This increases the rate of a reaction. Concentration: Concentration affects the amount of reactants and products in a chemical reaction, not the rate. When the concentration of reactants increases, there is an increased chance of collisions, and the amount of product produced will increase as well. When the concentration of reactants decreases, the number of collisions decreases, and the amount of product produced decreases.
To summarize, the response to a temperature change as a stress in a chemical reaction is different from the response to a change in concentration because temperature affects the rate of the reaction, while concentration affects the amount of reactants and products.
To know more about temperature change click on below link :
https://brainly.com/question/30270780#
#SPJ11
which statements describe phase changes? check all that apply. particles in a liquid need to move more slowly in order to freeze.
The following statements describe phase changes is particles in a liquid need to move more slowly in order to freeze.
Substances absorb energy when they melt and solidification occurs when the particles lose enough energy to slow down and bond together. In a state of matter, changes occur when temperature or pressure changes. Phase changes involve matter changing from one state to another. A change in a substance's physical form or state is known as a phase change, when water transforms from a liquid to a solid, for example, it is undergoing a phase change. Phase changes, often known as phase transitions, involve the transfer of energy. During a phase change, energy must be added or removed from the system, and this energy is often referred to as latent heat.
In other words, a phase transition is a phenomenon that occurs when a substance alters from one physical state to another. Solid, liquid, and gas are the three physical states of matter, energy must be added to break the bonds between molecules to transform from a solid to a liquid and then from a liquid to a gas. Particles in a liquid need to move more slowly in order to freeze and substances absorb energy when they melt. Solidification occurs when the particles lose enough energy to slow down and bond together. In a state of matter, changes occur when temperature or pressure changes.Phase changes involve matter changing from one state to another.
Learn more about phase transition at:
https://brainly.com/question/3255181
#SPJ11
a. on the basis of your intuitive understanding of the chemical properties of sodium and gold, where in your activity series would you place sodium and gold? b. will hydrochloric acid react with gold metal to produce gold(iii) ions and hydrogen gas? explain.
Based on my understanding of the chemical properties of sodium and gold, I would place sodium higher than gold in the activity series.
What is sodium?Sodium is a highly reactive metal that readily loses its outermost electron to form a positively charged ion, whereas gold is a relatively inert metal that does not easily undergo chemical reactions.
As for the second part of the question, hydrochloric acid (HCl) will not react with gold metal to produce gold(III) ions and hydrogen gas. Gold is a noble metal, which means it is resistant to oxidation and does not readily react with acids like HCl. However, aqua regia, a mixture of nitric acid and hydrochloric acid, can dissolve gold by forming complex ions, such as AuCl4-, which are more soluble in water than pure gold metal.
Learn more about sodium on
https://brainly.com/question/25597694
#SPJ1
describe how you can determine the ratio of cis- and trans- 2-methylcyclohexanols from the hnmr spectrum provided
The ratio of cis- and trans- 2-methylcyclohexanols is 1:3. It can be determined from the NMR spectra.
NMR spectra is defined as a spectroscopic technique to observe local magnetic fields around atomic nuclei. The NMR spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz's. The term Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition. That is why such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. According to the NMR spectra, the peak of the trans isomer is at 3.75 ppm since the methyl is away from the OH therefore less de-shielded as compared to the cis isomer. Cis isomer has its peak at 3.05. The peak at 3.05 is more in area that is the integration is 3 times as compared to that of the peak at 3.75.
To learn more about NMR spectra
https://brainly.com/question/17564948
#SPJ4
Calculate the molar mass for SnCL4
Answer:
To calculate the molar mass of SnCl4, we need to add the atomic masses of one tin (Sn) atom and four chlorine (Cl) atoms, each multiplied by their respective coefficients in the formula.
The atomic mass of Sn is 118.71 g/mol, and the atomic mass of Cl is 35.45 g/mol.
Therefore, the molar mass of SnCl4 can be calculated as follows:
Molar mass of SnCl4 = (1 × atomic mass of Sn) + (4 × atomic mass of Cl)
= (1 × 118.71 g/mol) + (4 × 35.45 g/mol)
= 118.71 g/mol + 141.80 g/mol
= 260.51 g/mol
So the molar mass of SnCl4 is 260.51 g/mol.
Explanation:
A certain first-order reaction is 73 percent complete in 65 seconds. Calculate the rate constant for this reaction
The rate constant for this first-order reaction is 0.0156 s^-1.
The progress of a first-order reaction can be described by the following equation,
ln([A]t/[A]0) = -kt
where [A]t is the concentration of the reactant at time t, [A]0 is the initial concentration of the reactant, k is the rate constant, and ln is the natural logarithm.
Given that the reaction is 73% complete in 65 seconds, we know that the concentration of the reactant at this time is 0.27 times its initial concentration,
[A]t/[A]0 = 0.27
We can substitute this value into the above equation and solve for k,
ln(0.27) = -k(65 s)
k = -ln(0.27) / 65 s
k = 0.0156 s^-1 (rounded to 3 significant figures)
To know more about rate constant, here
brainly.com/question/20305922
#SPJ4
calculate the molarity of a solution prepared by mixing 100.0 ml of the solution made in number 3 with 900.0 ml of 0.0250 m nacl.
The molarity of the solution prepared by mixing 100.0 ml of the solution made in number 3 with 900.0 ml of 0.0250 m NaCl is 0.1225 M.
We first calculate the moles of NaCl present in 900.0 ml of 0.0250 m NaCl solution.The formula to calculate the moles of solute is given as:
Moles of solute = molarity x volume (in liters)
So, the moles of NaCl in 900.0 ml of 0.0250 m NaCl solution would be:
Moles of NaCl = 0.0250 x (900.0/1000) = 0.0225 mol
Calculate the total volume of the mixed solution.The total volume of the mixed solution would be the sum of the volumes of the two solutions used in the mixing process.Total volume of mixed solution = 100.0 ml + 900.0 ml = 1000.0 ml or 1.0 L
Calculate the total number of moles of NaCl in the mixed solution.Total moles of NaCl in the mixed solution = moles of NaCl in 900.0 ml of 0.0250 m NaCl solution + moles of NaCl in 100.0 ml of the solution made in number 3
Total moles of NaCl in the mixed solution = 0.0225 mol + 0.100 mol = 0.1225 mol
Calculate the molarity of the mixed solution.The molarity of the mixed solution would be the number of moles of solute present in the solution per liter of solution.
Molarity of the mixed solution = Total moles of NaCl in the mixed solution / Total volume of the mixed solution
Molarity of the mixed solution = 0.1225 mol / 1.0 L = 0.1225 M
Therefore, the molarity of the solution prepared by mixing 100.0 ml of the solution made in number 3 with 900.0 ml of 0.0250 m NaCl is 0.1225 M.
More on molarity: https://brainly.com/question/30363118
#SPJ11
Which of the following are considerations that should be taken when choosing solvents for recrystallization?The desired compound should be significantly more soluble in one solvent than the other.The solvents should be more basic than the desired compound.The two solvents should have significantly different polarity.There may be more than 1 correct answer or no correct answers.
When choosing solvents for recrystallization, the considerations that should be taken into account are: The desired compound should be significantly more soluble in one solvent than the other; the two solvents should have significantly different polarity.
Recrystallization is a method for purifying substances. It is based on the solubility of the material in the solvent. The material is dissolved in a solvent, then the solvent is removed, leaving the purified solid.
The solubility of the material in the solvent is a critical element in recrystallization. Solubility must be high enough to enable the material to dissolve, but low enough to allow the material to crystallize out of solution.
The desired compound should be significantly more soluble in one solvent than the other. If one solvent has high solubility for the compound while the other solvent has low solubility, the compound will dissolve in the high solubility solvent and remain in solution when the mixture is cooled.
The compound will precipitate out of the mixture when it reaches its saturation point, leaving behind impurities in solution.
The two solvents should have significantly different polarity. The compound should have low solubility in the solvent with lower polarity but high solubility in the solvent with higher polarity.
The high polarity solvent is used to dissolve the compound, while the low polarity solvent is used to wash away impurities. The solvent should be less reactive than the compound, non-toxic, and reasonably priced.
To know more about recrystallization, refer here:
https://brainly.com/question/29215760#
#SPJ11
if the charge on a cation m is 4 and the charge on an anion z is 1-, what would the subscript be for the anion in the formula of the ionic compound formed from these two species?
The subscript above, of the
anion
in the formula of an ionic compound formed from a cation is 4.
This is because the total charge of the ionic compound must be equal to 0. To achieve this, the charge of the cation must be equal in magnitude, but opposite in sign, to the charge of the anion.
Therefore, if the charge of the
cation
is 4+, the charge of the anion must be 4- to balance the overall charge of the ionic compound.
Ionic compounds are composed of positively and negatively charged ions (cations and anions respectively). When cations and anions interact, they form ionic bonds.
In order for the ionic bond to form, the total charge of the cation and anion must be equal to 0. This is achieved by having the cation and anion of equal magnitude, but opposite sign.
For example, a cation with a charge of 4+ will interact with an anion of 4-. The resulting ionic compound will have a
neutral charge
of 0.
The subscript of the anion in the formula of an ionic compound formed from a cation with a charge of 4+ and an anion with a charge of 1- is 4.
Therefore, in this example, the cation has a charge of 4+, and so the anion must have a charge of 4- in order to form an ionic compound with a neutral charge of 0.
to know more about
anion
refer here:
https://brainly.com/question/20781422#
#SPJ11
write balanced chemical equations for the generation of hydrogen gas using hydrochloric acid and zinc metal, and for the generation of oxygen gas from the decomposition of hydrogen peroxide
The balanced chemical equations for the generation of hydrogen gas using hydrochloric acid and zinc metal is Zn + 2HCl ⇒ H2 + ZnCl₂. The balanced chemical equation for the generation of oxygen gas from the decomposition of hydrogen peroxide is 2H₂O₂ ⇒ 2H₂O + O₂.
A balanced chemical equation is a representation of a chemical reaction using chemical formulas and symbols, in which the number of atoms of each element in the reactants is equal to the number of atoms of each element in the products. To balance a chemical equation, coefficients are added to the chemical formulas of the reactants and products to make the number of atoms of each element equal on both sides of the equation. The coefficients indicate the relative number of molecules or formula units involved in the reaction.
Learn more about balanced chemical equations: https://brainly.com/question/30062241
#SPJ11