As a result, 390 cm equals the length x to the nearest whole number as a right triangle is equal to the sum of the squares of the other two sides .
what is Pythagoras theorem ?The relation between the opposite sides of a right triangle is a central idea in mathematics known as Pythagoras' theorem. According to this rule, the square of the hypotenuse's length—the side that faces the right angle—in a right triangle is the same as the total of the squares of both the lengths of the other two sides. The following is a mathematical formulation of the theorem where a and b are really the lengths of the right triangle's two shorter sides (called its legs), and c is the height of the hypotenuse.
given
The Pythagorean theorem, which asserts that the square of the length of the hypotenuse (the side opposite the right angle) in a right triangle is equal to the sum of the squares of the other two sides, can be used to determine the length x.
cos 34°= b/h
that is 0.829 = 450 cm/ h
h = 450/0.829
h = 542cm
sin 34° = p/h
that is, sin34° = x/542
0.559=x/542
so, x= 542×0.559
x= 390 cm
As a result, 390 cm equals the length x to the nearest whole number as a right triangle is equal to the sum of the squares of the other two sides .
To know more about Pythagorean theorem visit:
brainly.com/question/14930619
#SPJ1
There are two boxes containing only white and green pens. Box A has 3 green pens and 12 white pens. Box B has 6 green pens and 2 white pens. A pen is randomly chosen from each box. List these events from least likely to most likely. Event 1: choosing a green or white pen from Box B. Event 2: choosing a white pen from Box B. Event 3: choosing a blue pen from Box A. Event 4: choosing a green pen from Box A. Least likely Event, Event, Event, Most likely Event
The events ranked from least likely to most likely are:
Event 3: Choosing a blue pen from Box AEvent 2: Choosing a white pen from Box BEvent 4: Choosing a green pen from Box AEvent 1: Choosing a green or white pen from Box BWhat is probability?Probability refers to potential. A random event's occurrence is the subject of this area of mathematics. The range of the value is 0 to 1. Mathematics has incorporated probability to forecast the likelihood of various events.
To rank the events from least likely to most likely, we need to consider the probability of each event occurring.
Event 3: Choosing a blue pen from Box A
This event is the least likely because there are no blue pens in Box A. The probability of choosing a blue pen is 0.
Event 2: Choosing a white pen from Box B
This event is more likely than Event 3 because there are white pens in Box B. The probability of choosing a white pen from Box B is 2/8 or 1/4.
Event 4: Choosing a green pen from Box A
This event is more likely than Event 2 because there are green pens in Box A. The probability of choosing a green pen from Box A is 3/15 or 1/5.
Event 1: Choosing a green or white pen from Box B
This event is the most likely because it includes both a green and a white pen in Box B. The probability of choosing a green or white pen from Box B is 6/8 or 3/4.
Therefore, the events ranked from least likely to most likely are:
Event 3: Choosing a blue pen from Box A
Event 2: Choosing a white pen from Box B
Event 4: Choosing a green pen from Box A
Event 1: Choosing a green or white pen from Box B
Learn more about probability on:
https://brainly.com/question/13604758
#SPJ9
an article marked at rs.8,000 is sold at rs6689.60 allowing some discount and adding vat.8f the rate of discount was double then the rate of vat, find the selling price of the article without vat
The selling price of the article without VAT is Rs. 6,429.13.
What is Algebraic expression ?
In mathematics, an algebraic expression is a combination of variables, constants, and mathematical operations, such as addition, subtraction, multiplication, and division, that represents a quantity or a relationship between quantities.
Let's assume the rate of discount to be 'x' and the rate of VAT to be 'y'.
According to the problem, the marked price of the article is Rs. 8,000.
After applying the discount, the selling price becomes:
Selling price = Marked price - Discount
Selling price = 8000 - (x÷100) * 8000
Now, we add the VAT to the selling price:
Selling price with VAT = Selling price + (y÷100) * Selling price
Selling price with VAT = [8000 - (x÷100) * 8000] + [(y÷100) * (8000 - (x÷100) * 8000)]
Selling price with VAT = 6689.60 (Given)
We are also given that the rate of discount was double the rate of VAT, i.e.,
x = 2y
Substituting this value in the above equation, we get:
6689.60 = [8000 - (2y÷100) * 8000] + [(y÷100) * (8000 - (2y÷100) * 8000)]
Simplifying this equation, we get:
6689.60 = 8000 * [1 - (2y÷100) + (y÷100) - (2y÷100) * (y÷100)]
6689.60 = 8000 * [1 - (3y÷50) + (y*y÷5000)]
Solving for y, we get:
y = 4
Now, we can calculate the selling price without VAT as follows:
Selling price without VAT = Selling price - (y÷100) * Selling price
Selling price without VAT = 6689.60 - (4÷100) * 6689.60
Selling price without VAT = Rs. 6,429.13
Therefore, the selling price of the article without VAT is Rs. 6,429.13.
To learn more about Algebraic expression from given link.
brainly.com/question/31238826
#SPJ1
At the Golf Classic Open, the professional golfer. Gunter Money hit a chip shot from the rough that just skimmed the top of a 90 foot pine tree and went right into the hole, 220 feft away, on the green for an eagle on the 12th fairway.
Use regression to find an equation for the path of the golf ball?
Use matrices to find the equation for the golf balls path?
The assumptions include that the path of the ball can be modeled by a parabolic function, that data on the trajectory of the ball is needed, and that matrices can be used to solve for the constants a, b, and c. Finally, the inverse of the matrix can be computed using matrix algebra.
What is a matrix?A matrix is a rectangular array of letters, numbers, or expressions in mathematics that are organized in rows and columns. In addition to representing and transforming data in statistics, physics, and computer science, matrices are also used to represent and convert linear equations and transformations in linear algebra.
We need to make some assumptions and approximations in order to develop an equation for the flight of the golf ball because the actual path of the ball is influenced by a number of variables, including wind, temperature, humidity, and spin. The idea that a parabolic function may simulate the ball's trajectory is one that is frequently held.
We would need information on the ball's trajectory, such as height and distance at various points along the trip, in order to perform regression. Regression analysis cannot be used to derive an equation for the trajectory of the golf ball in the absence of this data.
To use matrices, we can set up a system of equations based on the parabolic function:
[tex]y = ax^2 + bx + c[/tex]
where x is the distance traveled by the ball, y is the height of the ball, and a, b, and c are constants to be determined.
We can set up three equations based on the following assumptions:
At the starting point (x=0), the height of the ball is zero.
At the point where the ball hit the tree (x = d), the height of the ball is the height of the tree (90 feet).
At the landing point on the green (x = D), the height of the ball is zero.
Using these assumptions, we can set up the following system of equations:
c = 0 (from assumption 1)
[tex]ad^2 + bd + c[/tex] = 90 (from assumption 2)
[tex]aD^2 + bD + c[/tex] = 0 (from assumption 3)
To solve for the constants a, b, and c, we can use matrix algebra to write the system in matrix form:
[tex][0 0 1] [c] [0][/tex]
c[tex][d^2 d 1] * [b][/tex] = [90]
[tex][D^2 D 1][/tex] [a] [0]
Multiplying the matrices, we get:
[0 0 1] [c] [0]
[tex][d^2 d 1][/tex] * [b] = [90]
[tex][D^2 D 1][/tex] [a] [0]
Simplifying, we get:
[c] [0]
[b] = [90] * [tex][d^2 d 1]^-1 * [d^2 d 1][/tex]
[a] [0]
where the inverse of the matrix [tex][d^2 d 1][/tex] can be computed using matrix algebra. Once we have the values of a, b, and c, we can plug them into the equation [tex]y = ax^2 + bx + c[/tex] to get the equation for the path of the golf ball.
To know more about matrix, visit
brainly.com/question/9967572
#SPJ1
Can someone help me ASAP it’s due tomorrow. I will give brainliest if it’s all done correctly.
Answer all parts!!
Part A: Sample space of randomly selecting 2 lollipops with replacement:
{GG, GC, GL, CG, CC, CL, LG, LC, LL}
Part B: Sample space of randomly selecting 2 lollipops without replacement:
{GC, GL, CG, CL, LG, LC}
What is the experiment about!The experiment of randomly selecting 2 lollipops without replacement shows dependent events because the probability of drawing the second lollipop depends on what the first lollipop was.
For example, if the first lollipop drawn is grape, then the probability of drawing another grape lollipop is decreased because there is only one left in the bag.
The experiment of randomly selecting 2 lollipops with replacement shows independent events because each lollipop can be chosen without affecting the probability of choosing the other lollipops.
Learn more about sample space on
https://brainly.com/question/10558496
#SPJ1
PLS HELP! (I need to finish this today because it was due yesterday!)
Answer:
Step-by-step explanation:
Search up the area of both. rectangle is LxW therefore the area is 18. the other is trapezium therefore, ((a+b)xh)/2 therefore the area is 20. trapezium has larger area
Answer trapezoid has greater area
Step-by-step explanation: rec: 6*3= 8, trapezoid [ (6+2) * 5 ]1/2 = 20
Las calificaciones de Emma al finalizar el semestre son las siguientes: 9, 10, 10, 6, 7, 8, 9, 6, ¿cuál es su promedio?
PART A: A can of cat food measures 1" tall and a diameter of 3.5". What is the volume of cat food in the can? To solve Give your answer in cubic inches. Round to the nearest hundredth.
PART B: Cat food is sold by ounces (weight).
If the can holds 5.8 ounces, write a ratio to show cubic inches (your answer from slide 3) to ounces.
The volume of cat food in the can is approximately 9.63 cubic inches.
What is the volume of a cylinder?
The volume of a cylinder can be found using the formula:
V = πr²h
where V is the volume, r is the radius of the circular base, h is the height of the cylinder, and π is the constant pi (approximately equal to 3.14).
To find the volume of the can of cat food, we can use the formula for the volume of a cylinder, which is V = πr²h, where r is the radius (half the diameter) and h is the height.
The radius of the can is 3.5/2 = 1.75 inches, and the height is 1 inch. So, the volume of the can is:
V = π(1.75)²(1)
= 9.62 cubic inches
≈ 9.63 cubic inches (rounded to the nearest hundredth)
Therefore, the volume of cat food in the can is approximately 9.63 cubic inches.
To learn more about the volume of a cylinder visit:
https://brainly.com/question/30425059
#SPJ1
Solve y3 = 1.
y = −1
y = 1
y = ±1
y = 3
The answer is y = ±1, as well as two complex solutions. The answer y = 3 is not a solution to the equation [tex]y^3 = 1.[/tex]
What is equation?An equation is a statement that asserts the equality of two expressions. It typically contains one or more variables, which are symbols that represent unknown or varying quantities. The expressions on either side of the equals sign can include numbers, constants, functions, and other mathematical operations.
To solve[tex]y^3 = 1[/tex], we can take the cube root of both sides of the equation:
y = ∛1
There are three cube roots of 1, which are 1, -1/2 + √3/2 i, and -1/2 - √3/2 i, where i is the imaginary unit. These three roots form a complex conjugate pair.
Therefore, the solutions to the equation [tex]y^3 = 1[/tex] are:
y = 1
y = -1/2 + √3/2 i
y = -1/2 - √3/2 i
So the answer is y = ±1, as well as two complex solutions. The answer y = 3 is not a solution to the equation [tex]y^3 = 1.[/tex]
To know more about equation:
https://brainly.com/question/10413253
#SPJ1
please help will give brainliest
Answer:
Option D is the correct answer
D. f(n) = 95 + 60(n - 1)
Step-by-step explanation:
Solution:
f(n) = installation charges + monthly fees x number of months -> f(n) = 35 + 60*n-> f(n) = 35 + 60*n + 60 - 60 (Add and subtract 60)-> f(n) = (35 + 60) + (60*n - 60)-> f(n) = 95 + 60(n - 1)I need help with this question it’s algebra 2 .
The true statements are:
C) -5 is a solution to f(x).
E) f(x) = 2x^2 + 9x - 5
F) 0 is a solution to f(x).
I) 5 is a solution to f(x).
K) -3 is a solution to f(x).
L) (-5,0) is an x-intercept of f(x).
How do we calculate?From the given factors of f(x), we know that:
f(x) = 3 * (2x-1) * (x+5)
Using the information, we can calculate the statements are true:
A) 1 is a solution to f(x).
Not necessarily true. We need to substitute x=1 into the expression for f(x) to check if it equals zero.
B) f(x) = 6x^2 - 33x - 15
Not true. The correct expression for f(x) is given above.
C) -5 is a solution to f(x).
True. Substituting x=-5 into f(x) gives us: f(-5) = 3*(-11)*0 = 0.
D) 3 is a solution to f(x).
Not necessarily true. We need to substitute x=3 into the expression for f(x) to check if it equals zero.
E) f(x) = 2x^2 + 9x - 5
True. This is the expanded form of f(x) using the given factors.
Learn more about expanded form at: https://brainly.com/question/16802852
#SPJ1
A farmer wants to estimate the number of moles in a local area she catches and tags 30 moles, then releases them back into the local area a few days later the farmer catches another sample of the miles and finds that half of them have a tag estimate the total number of moles in the local area
The estimated total number of moles in the local area is 4.
The farmer needs to use the capture-recapture method to estimate the total number of moles in the local area. This involves tagging a population sample, releasing them back into the population, and then capturing another sample to determine the proportion of tagged individuals in the second sample. Using this proportion, the total population can be estimated using the following formula:
total population = (number in first sample * number in the second sample) / number of tagged individuals in the second sample
In this case, the farmer tagged 30 moles in the first sample and found that half of the second sample had tags. We can use these values to estimate the total number of moles:
total population = (30 * 2) / 15
total population = 4
Note that the actual population size may be larger or smaller than this estimate due to factors such as migration, birth, and death rates.
To correctly estimate the number of moles in a substance, the farmer needs to use the grams to moles formula, which is:
n = m / M
where n is the number of moles, m is the mass of the substance in grams, and M is the molar mass in grams per mole . To calculate the molar mass of a substance, the farmer can sum the molar masses of its component atoms
Find out more about the population size
at brainly.com/question/20039086
#SPJ4
Without making any calculations, which distribution of data has the largest standard deviation?
O 1, 1, 1, 1, 4, 4, 7,7,7,7
O 1, 1, 1, 4, 4, 4, 4,7,7,7
O 1, 1, 4, 4, 4, 4, 4, 4, 7, 7
O 1, 4, 4, 4, 4, 4, 4, 4, 4, 7
In ΔJKL, the measure of ∠L=90°, KJ = 41, JL = 40, and LK = 9. What ratio represents the cosine of ∠J?
Given:
[tex]\angle\text{L}=90^\circ[/tex]
[tex]\text{KJ}=41[/tex]
[tex]\text{JL}=40[/tex]
[tex]\text{LK}=9[/tex]
To find the cosine of angle J
By using cosine ratio,
[tex]\text{cos J}=\dfrac{\text{adjacent side}}{\text{hypotenuse}}[/tex]
[tex]\text{cos J}=\dfrac{\text{JL}}{\text{JK}}[/tex]
[tex]\text{cos J}=\dfrac{\text{40}}{\text{41}}[/tex]
The ratio of cosine of angle J is 40/41.
If there is a 60% chance of rain each day this week, which simulation tool(s) could be used to find the experimental probability that it will take at least three days before it rains?
random number list
coin
die
colored discs
Answer:
A random number list could be used to simulate the probability of rain each day this week. For example, we could assign the numbers 1-60 to the days where rain is expected and the numbers 61-100 to the days where it is not expected. Then, we could use a random number generator to simulate each day and count how many days it takes until it rains for the first time. By repeating this simulation many times and taking the average, we could estimate the experimental probability of it taking at least three days before it rains.
0
What is the image point of (-2, 10) after the transformation R270° 0 D₁?
HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PLAASE Kiran stakes his kite into the ground. The kite is on a string that is 18 ft long and makes a 30 degree angle with the ground. How high is the kite? Explain or show your thinking by filling in the spots below.
Answer:
blank1: 9
blank2: 30°
blank3: 60°
blank4: 90°
blank5: half
Step-by-step explanation:
The 30°-60°-90° triangle has some great shortcuts associated with it (there are math reasons, trig reasons for these shortcuts)
One of these great shortcuts is that the short leg is half the hypotenuse (or the hypotenuse is double the short leg)
For your question, the kite string, 18ft, is the hypotenuse. The kite height is half that--9ft.
see image.
3. What is the solution to 4(y – 3) + 19 = 8(2y + 3) + 7?
A.
B.
를
-
C. -2
D. 2
Answer:
The answer to your problem is, C. -2
Step-by-step explanation:
To solve : 4(y - 3) +19=8(2y + 3) + 7?
Open the bracket:
4y - 12 + 19 = 16y + 24 + 7
Collect like terms
4y - 16y = 24 + 7 + 12 - 19
-12y = 24
Divide both sides by - 12 to isolate y
-12y / - 12 = 24 / - 12
y = -2
Thus the answer to your problem is, C. -2
For first step you do not really need to “ open the bracket “ just solve it.
The Area of a Rectangle is 40. The width is 2 less than 3
times the length. Find the width.
O 10
O 12
O 15
O 14
Based on the above, the width of the rectangle is 10.
What is the width?Let's use "w" to represent the width and "l" to represent the length of the rectangle.
From the problem, we know that the area of the rectangle is 40, so we can write:
Area = length × width
40 = l × w
We also know that the width is 2 less than 3 times the length, so we can write:
width = 3l - 2
Now we can substitute this expression for "w" in the equation for the area: 40 = l × (3l - 2)
Expanding the right side gives: 40 = 3l² - 2l
Rearranging and dividing by 2 gives:
3l²- 2l - 40 = 0
(3l + 10)(l - 4) = 0
Therefore, l = 4 (because the length cannot be negative), and we can find the width using the expression we found earlier:
width = 3l - 2
width = 3(4) - 2
width = 10
So the width of the rectangle is 10. Therefore, the answer is 10.
Learn more about width from
https://brainly.com/question/15161439
#SPJ1
5.66. what is the probability that an irs auditor will catch only 2 income tax returns with illegitimate deduc-tions if she randomly selects 5 returns from among 15 returns, of which 9 contain illegitimate deductions?
The probability that an irs auditor will catch only 2 income tax returns with illegitimate deduc-tions = 0.24
Let us assume that X be the number of returns containing illegitimate deductions in the sample.
Here, X has a hypergeometric distribution.
We need to find the probability that an IRS auditor will catch only 2 income tax returns with illegitimate deduc-tions.
Here, N = 15, r = 9, n = 5
So, P (X = 2) = (⁹C₂ × ⁶C₃) / (¹⁵C₅)
We know that the combination formula:
⁹C₂ = 9! / (2! × 7!)
= 36
⁶C₃ = 6! / (3! × 3!)
= 20
¹⁵C₅ = 15! / (5! 10!)
= 3003
P (X = 2) = (⁹C₂ × ⁶C₃) / (¹⁵C₅)
= (36 × 20) / (3003)
= 0.24
Therefore, the required probability is: 0.24
Learn more about the probability here:
https://brainly.com/question/15124899
#SPJ4
I really need help with this
The dilated triangle has vertices
P' (-3, 2), Q' (1, 4), and R' (1, -2).How to find the coordinates after dilation'The coordinates of the vertex of the triangle before dillation is given as
P (-6, 4 )
Q (2, 8)
R (2, -4)
To dilate a figure by a scale factor of 1/2, we need to multiply the coordinates of each point by 1/2.
The coordinates of P are (-6, 4). Multiplying by 1/2, we get:
(-6 * 1/2, 4 * 1/2) = (-3, 2)
The coordinates of Q are (2, 8). Multiplying by 1/2, we get:
(2 * 1/2, 8 * 1/2) = (1, 4)
The coordinates of R are (2, -4). Multiplying by 1/2, we get:
(2 * 1/2, -4 * 1/2) = (1, -2)
Therefore, the dilated triangle has vertices P'(-3, 2), Q'(1, 4), and R'(1, -2).
Learn more about dilated triangle at:
https://brainly.com/question/29634916
#SPJ1
Math for School: Practice & Problem Solving (LMS graded)
Challenge Abag contains pennies, nickels, dimes, and quarters. There are 50 coins in all of the coins, 10%
han pennies. There are 2 more nickels than pennies How much money does the bag contain?
The bag contains $4.60 in coins.
What are coins?
Let's use P, N, D, and Q to represent the number of pennies, nickels, dimes, and quarters, respectively, in the bag.
We know that the total number of coins is 50, so:
P + N + D + Q = 50
We also know that 10% of the coins are pennies, so:
P = 0.1(50)
P = 5
There are 2 more nickels than pennies, so:
N = P + 2
N = 5 + 2
N = 7
Now we can use this information to find the number of dimes and quarters. Since there are 50 coins in total, we can substitute the values we have found for P and N into the first equation:
P + N + D + Q = 50
5 + 7 + D + Q = 50
12 + D + Q = 50
D + Q = 38
We also know the values of P and N, so we can find the total value of all the coins in the bag:
Total value = (value of pennies) + (value of nickels) + (value of dimes) + (value of quarters)
Total value = (5 cents x 5) + (7 cents x 5) + (10 cents x D) + (25 cents x Q)
Total value = 25 + 35 + 10D + 25Q
We can substitute D + Q = 38 into this equation to get:
Total value = 25 + 35 + 10(D + Q)
Total value = 60 + 10(38)
Total value = 460 cents, or $4.60
Therefore, the bag contains $4.60 in coins.
To know more about dimes, visit:
https://brainly.com/question/16439760
#SPJ1
Factor 25z^2 - 81
ANSWER FAST WILL GIVE BRAINLIEST
Answer: B= (5z+9) (5z-9)
Step-by-step explanation:
Answer:
Step-by-step explanation:
Step 1: Use the sum-product pattern
25z² - 81 =
25z² + 45z - 45z - 81 =
Step 2: Common factor from the two pairs
(25z² + 45z) + (−45z − 81) =
Step 3: Rewrite in Factored Form
5z (5z + 9) − 9 (5z + 9) =
(5 - 9) (5 + 9)
Solution:
B: (5 + 9) (5 - 9)
a machine that is programmed to package 1.60 pounds of cereal is being tested for its accuracy in a sample of 40 cereal boxes, the sample mean filling weight is calculated as 1.62 pounds. the population standard deviation is known to be 0.06 pounds. find the 95% confidence interval for the mean.
The 95% confidence interval for the mean is (1.6048, 1.6352).Hence, option (d) is the correct answer.
As given, a machine that is programmed to package 1.60 pounds of cereal is being tested for its accuracy in a sample of 40 cereal boxes, the sample mean filling weight is calculated as 1.62 pounds. The population standard deviation is known to be 0.06 pounds. We are required to find the 95% confidence interval for the mean. Here are the steps to solve this problem:
The formula to find the confidence interval is as follows;
Lower limit = x - zα/2 (σ/√n)
Upper limit = x + zα/2 (σ/√n)
Where,
x= sample mean
zα/2 = z-value of the level of significance
σ = population standard deviation
n = sample size
We are given;
x = 1.62 pounds
σ = 0.06 pounds
n = 40
We need to find the z-value of the level of significance, which can be found using the z-table or by using the calculator.Using the z-table, we get the z-value at 95% confidence interval as zα/2 = 1.96
Substituting the values, we get
Lower limit = 1.62 - 1.96(0.06/√40)
Upper limit = 1.62 + 1.96(0.06/√40)
Lower limit = 1.6048, Upper limit = 1.6352
for more questions on confidence interval
https://brainly.com/question/20873848
#SPJ11
Which equation represents the general form a circle with a center at (â€"2, â€"3) and a diameter of 8 units? x2 y2 4x 6y â€" 51 = 0 x² y² â€" 4x â€" 6y â€" 51 = 0 x2 y2 4x 6y â€" 3 = 0 x2 y2 â€" 4x â€" 6y â€" 3 = 0
x² + y² + 4x + 6y - 3 = 0 equation represents the general form a circle with a center at (â€"2, â€"3) and a diameter of 8 units.
The equation of a circle with center (h, k) and radius r can be written in the form (x - h)² + (y - k)² = r².
Given a center of (-2, -3) and a diameter of 8 units, first find the radius, which is half of the diameter:
r = 8 / 2 = 4
Now, substitute the center coordinates and radius into the equation:
(x - (-2))² + (y - (-3))² = 4²
(x + 2)² + (y + 3)² = 16
Now, expand the equation to get the general form:
(x² + 4x + 4) + (y² + 6y + 9) = 16
x² + 4x + y² + 6y + 4 + 9 - 16 = 0
Combine like terms to get the final equation:
x² + y² + 4x + 6y - 3 = 0
For similar question on equation.
https://brainly.com/question/25678139
#SPJ11
the ruler shows a 7 inch segment divided into 2 equal parts.What is the length of one of those part
Answer:
the ruler showed 7 inch segment
Step-by-step explanation:
have an amazing weekend
Answer:
7÷2= 3.5
Step-by-step explanation:
The length of each part is 3.5
What is the surface area of a right circular cone with a diameter of 8 m, height of 6.9 m, and a slant height of 18.5 m? Round your answer to the nearest whole.
The surface area of a right circular cone can be found using the formula:
A = πr²+ πrl
where r is the radius of the base, l is the slant height, and π is approximately 3.14159.
In this case, the diameter of the base is 8 m, so the radius is 4 m. The slant height is 18.5 m. The height is not needed for this calculation.
Substituting the given values, we get:
A = π(4 m)² + π(4 m)(18.5 m)
A = π(16 m²) + π(74 m²)
A = π(90 m²)
Using the approximation π ≈ 3.14159, we get:
A ≈ 282.74 m²
Therefore, the surface area of the right circular cone is approximately 283 m² rounded to the nearest whole.
Find the perimeter of the figure (use 3.14 as pi if u can)
Answer:
b
Step-by-step explanation:
just add then then after you add 27=27 multiply it by 2
PLS HELP ASAP
MAKE A NUMBER LINE AND MARK ALL THE POINTS
A number line that represent the values of x is shown in the graph attached below.
What is a number line?In Mathematics and Geometry, a number line simply refers to a type of graph with a graduated straight line which comprises both positive and negative numbers that are placed at equal intervals along its length.
This ultimately implies that, a number line primarily increases in numerical value towards the right from zero (0) and decreases in numerical value towards the left from zero (0):
x < - 1 or x > 1
-1 > x > 1
-3 < x ≤ 1
-5 ≤ x ≤ 0
In this scenario and exercise, we would use an online graphing calculator to plot each of the inequality as shown in the graph (number line) attached below.
Read more on number line here: brainly.com/question/22515080
#SPJ1
the time until recharge for batteryin a laptop computer under common conditions is normally distributed with mean of 275 minutes and standard deviation of 50 minutes. a) what is the probability that battery lasts more than four hours? round the answer to 3 decimal places b) what are the quartiles (the 25% and 75% values) of battery life? 25% value minutes (round the answer to the nearest integer) 75% value minutes (round the answer to the nearest integer:) c) what value of life in minutes is exceeded with 95% probability? integer:) (round the answer to the nearest
a) The probability that the battery lasts more than 4 hours is 0.758 (rounded to 3 decimal places).
b) The 25% value is 240 minutes, and the 75% value is 310 minutes.
c) The value of life in minutes that is exceeded with 95% probability is 357 minutes.
a) To find the probability that the battery lasts more than 4 hours (240 minutes), we first need to convert 240 minutes into a z-score.
z = (X - μ) / σ
z = (240 - 275) / 50
z = -0.7
Now, we'll use a z-table to find the probability that the battery lasts more than 4 hours:
P(Z > -0.7) = 1 - P(Z ≤ -0.7) = 1 - 0.2420 = 0.758
The probability that the battery lasts more than 4 hours is 0.758 (rounded to 3 decimal places).
b) To find the quartiles, we'll use the z-table to find the z-scores corresponding to 25% and 75%:
25%: z = -0.674
75%: z = 0.674
Now, we'll convert the z-scores back into minutes:
Q1 = μ + z * σ = 275 + (-0.674) * 50 = 240 (rounded to the nearest integer)
Q3 = μ + z * σ = 275 + (0.674) * 50 = 310 (rounded to the nearest integer)
The 25% value is 240 minutes, and the 75% value is 310 minutes.
c) To find the value of life in minutes that is exceeded with 95% probability, we first find the z-score corresponding to 95%:
95%: z = 1.645
Now, we'll convert the z-score back into minutes:
X = μ + z * σ = 275 + (1.645) * 50 = 357 (rounded to the nearest integer).
For similar question on probability.
https://brainly.com/question/27802713
#SPJ11
6 less than a number raised to the fifth power
Answer:
let n be the number
6 less than the number
= (n-6)^5 = 32
(n-6)^5 = 2^5
since powers are equal we equate the bases
n-6 =2
n=8