Can someone help me asap pleaseee

Can Someone Help Me Asap Pleaseee

Answers

Answer 1

The horizontal component of the velocity is 10.69 m/s and the vertical component of the velocity is 7.42 m/s.

What are the horizontal and vertical components of the velocity?

The horizontal and vertical components of the velocity can be found using trigonometry.

The horizontal component of the velocity is given by Vx = V * cos(theta), where V is the initial velocity and theta is the angle above the horizontal.

Vx = 13 m/s * cos(35 degrees) = 10.69 m/s

The vertical component of the velocity is given by Vy = V * sin(theta), where V is the initial velocity and theta is the angle above the horizontal.

Vy = 13 m/s * sin(35 degrees) = 7.42 m/s

The time the snowball is in the air can be found using the vertical component of the velocity and acceleration due to gravity.

The equation for the height of an object (h) at a time (t) under constant acceleration due to gravity (g) with an initial vertical velocity (Vy) is:

h = Vy * t + 0.5 * g * t^2

At the highest point, the vertical velocity is zero. So we can use this equation to find the time it takes for the snowball to reach its highest point:

0 = Vy * t + 0.5 * g * t^2

Solving for t, we get:

t = -Vy / (0.5 * g)

t = -7.42 m/s / (0.5 * 9.81 m/s^2)

t = 1.51 seconds

Since the snowball takes the same amount of time to reach its highest point and fall back down, the total time in the air is twice this value:

Total time = 2 * 1.51 seconds

Total time = 3.02 seconds

Therefore, the giant snowball is in the air for 3.02 seconds.

The horizontal distance the snowball travels can be found using the horizontal component of the velocity and the time the snowball is in the air.

The equation for the horizontal distance (d) traveled by an object with an initial horizontal velocity (Vx) over time (t) is:

d = Vx * t

d = 10.69 m/s * 3.02 seconds

d = 32.3 meters

Therefore, the giant snowball travels 32.3 meters horizontally before hitting the ground.

Learn more about horizontal and vertical components of velocity at: https://brainly.com/question/24681896

#SPJ1


Related Questions

an object with mass m is suspended at rest from a spring with a spring constant of 200 n/m . the length of the spring is 5.0 cm longer than its unstretched length l, as shown above. a person then exerts a force on the object and stretches the spring an additional 5.0 cm. what is the total energy stored in the spring at the new stretched length?

Answers

The total energy stored in the spring at the new stretched length is 2.25 Joules.

The potential energy stored in a spring is given by the formula:

U = (1/2) k x²

where U is the potential energy, k is the spring constant, and x is the displacement from the equilibrium position. Initially, the spring was stretched by 5.0 cm, so its displacement from the equilibrium position is x = 0.05 m + 0.05 m = 0.10 m.

The force applied to stretch the spring is given by Hooke's law, F = kx, where F is the force applied, k is the spring constant, and x is the displacement from the equilibrium position. The force applied to stretch the spring by an additional 5.0 cm is,

F = kx = (200 N/m)(0.05 m) = 10 N

The total displacement of the spring is now x = 0.10 m + 0.05 m = 0.15 m. The total potential energy stored in the spring is:

U = (1/2) k x² = (1/2)(200 N/m)(0.15 m)² = 2.25 J

To know more about spring, here

brainly.com/question/30284705

#SPJ4

a two-dimensional uniform flow of water passes over a bump as shown. the flow is slow enough that the water surface remains flat. a weak vortex containing vorticity of strength 10 [1/sec] lying along a vertical axis is introduced upstream of the bump. you may ignore viscous effects. the flow is from right to left. which sketch is true? explain in dropbox.

Answers

The sketch that is true is given in option (c). a weak vortex containing vorticity of strength 10 [1/sec] lying along a vertical axis is introduced upstream of the bump.

A vortex is a region in a fluid in which the flow revolves around an axis line, the fluid motion in a vortex is smooth, continuous, and follows a curved path around the axis. In this problem, a weak vortex containing vorticity of strength 10 [1/sec] lying along a vertical axis is introduced upstream of the bump. The flow is two-dimensional, uniform, and slow enough that the water surface remains flat. Ignoring viscous effects, the water flow from right to left passes over a bump. We have to find the correct sketch of the flow.

In a 2D uniform flow of water passing over a bump, the streamlines deflect slightly in front of and behind the bump. They converge before the bump and diverge behind the bump, forming eddies that eventually dissipate. A vortex in the flow will also form an eddy, which will interact with the eddies from the bump. This will result in a complex flow pattern. The sketch that shows the complex flow pattern and a weak vortex upstream of the bump is option (d). Hence, the correct answer is option (c).

Learn more about vortex at:

https://brainly.com/question/14805380

#SPJ11

which skater, if either, has the greater momentum after the push-off? explain. match the words in the left column to the appropriate blanks in the sentences on the right.

Answers

The answer to Part A is that Ricardo has a larger magnitude momentum than Paula after the push-off. According to the law of conservation of momentum, the total momentum of an isolated system remains constant if no external forces are acting on it.

In this case, we can consider Paula and Ricardo as an isolated system since no external forces are acting on them during the push-off. Initially, the total momentum of the skaters is zero since they are at rest. After the push-off, the skaters move in opposite directions, and their momenta have opposite signs. However, the total momentum of the system must still be conserved.

Since Ricardo weighs more than Paula, he has a greater mass. Therefore, if both skaters push off with the same force, Ricardo will have a smaller velocity than Paula after the push-off. However, since momentum is a product of mass and velocity, we need to consider both factors to determine who has the greater momentum.

After the push-off, the total momentum of the system is non-zero and has the same magnitude for both skaters but opposite signs. Therefore, the magnitude of Ricardo's momentum must be greater than Paula's momentum, since he has a greater mass, and their velocities have opposite signs.

To learn more about magnitude momentum

https://brainly.com/question/14480863

#SPJ4

Complete question:

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula. Part A Which skater, if either, has the greater momentum after the push-off? Explain. Match the words in the left column to the appropriate blanks in the sentences on the right. Reset Help zero Initially, the total momentum of the skaters is since they are at rest. After the push-off, the total momentum Therefore, Ricardo has after the push-off. non-zero increases decrease remains the same a larger magnitude momentum than Paula a smaller magnitude momentum than Paula the same magnitude momentum as Paula Submit Request Answer

the absorption of infrared radiation by atmospheric gases and the random re-radiation of the energy back towards earth and into space is known as

Answers

The process of absorbing infrared radiation by atmospheric gases and then randomly re-radiating the energy back towards Earth and into space is referred to as the greenhouse effect.

This is a natural phenomenon that helps to regulate the Earth's temperature and make it habitable.Infrared radiation is a type of electromagnetic radiation that has longer wavelengths than visible light. The Sun emits this type of radiation, which is absorbed by the Earth's surface and then re-radiated back into the atmosphere as heat.

Greenhouse gases in the atmosphere, such as carbon dioxide, water vapor, methane, and nitrous oxide, absorb some of this heat and re-radiate it back towards the Earth. This results in a warming effect known as the greenhouse effect. It is known as the greenhouse effect because it operates in a similar manner to a greenhouse.

A greenhouse traps heat by allowing sunlight to enter but preventing heat from escaping. Similarly, greenhouse gases trap heat in the atmosphere by allowing sunlight to enter but preventing heat from escaping into space.

The greenhouse effect is a natural and necessary process that keeps the Earth's temperature at a suitable level for human habitation.

Learn more about greenhouse effect here:

https://brainly.com/question/1577730

#SPJ11

Which of the following statements BEST predicts the outcome of the chemical reaction?

Answers

Answer:

Explanation:

what are the statement

Gibb's and Helmholtz equations predicts the direction and spontaneity of chemical reactions.

What is Gibb's and Helmholtz equation ?

The Gibbs-Helmholtz equation is a thermodynamic equation that is used to calculate changes in a system's Gibbs free energy as a function of temperature. It explains how the Gibbs free energy, first proposed by Josiah Willard Gibbs, fluctuates with temperature.

Gibb's and Helmholtz equation is given by,

[tex](\frac{\partial(\frac{G}{T}) }{\partial T} )}}\right)_{p}=-{\frac {H}{T^{2}}},}[/tex]

where T is the absolute temperature, H is the enthalpy, and G is the Gibbs free energy of the system, all under constant pressure p. According to the equation, the change in the G/T ratio under constant pressure as a result of an infinitesimally small change in temperature is a factor H/T2.

There is insufficient information about this problem, however the problem may be like this.

As a result, the direction and spontaneity of chemical processes are predicted by the Gibbs and Helmholtz equations. As a result, the answer is the Gibbs and Helmholtz equations.

To know more about Gibb's free energy :

https://brainly.com/question/20358734

#SPJ2.

a box with center of mass indicated by the dot is placed on an inclined plane. in which configuration does the box tip over?

Answers

To determine in which configuration the box tips over when placed on an inclined plane, consider the following factors:
1. The position of the center of mass (COM) relative to the base of the box.
2. The angle of the inclined plane.
A box will tip over if the line of action of its gravitational force (through the center of mass) falls outside the base of the box.

Following Steps should be followed to determine in which configuration the box tips over :
1. Identify the position of the center of mass (COM) indicated by the dot.
2. Draw a vertical line downwards from the COM (this represents the gravitational force acting on the box).
3. If this vertical line falls within the base of the box, the box will remain stable and not tip over.
4. If the vertical line falls outside the base of the box, the box will tip over.
The box will tip over when its center of mass is positioned such that the gravitational force acts outside the base of the box on the inclined plane.

For similar question on position of the center of mass

https://brainly.com/question/28134510

#SPJ11

a solid cylinder with a radius of 3.8cm has the same mass as a solid sphere of radius R. If the sphere has the same moment of inertia about its center asthe cylinder about its axis, what is the sphere's radius?

Answers

To find the sphere's radius, we can equate the moments of inertia for the sphere and the cylinder. The moment of inertia for a solid sphere (I_sphere) about its center is given by the equation:



I_sphere = (2/5) * M_sphere * R^2
The moment of inertia for a solid cylinder (I_cylinder) about its axis is given by the equation:
I_cylinder = (1/2) * M_cylinder * radius^2

Given that the mass of the sphere and cylinder are the same (M_sphere = M_cylinder), and their moments of inertia are equal, we can equate the two equations:
(2/5) * R^2 = (1/2) * (3.8^2)

Now, we solve for the sphere's radius, R:
R^2 = (5/4) * (3.8^2)
R^2 ≈ 18.05
R ≈ 4.25 cm

Therefore, the sphere's radius is approximately 4.25 cm.

Learn more about moment of inertia here:

https://brainly.com/question/29415485

#SPJ4

a very long straight wire carries a 12.4-a current eastward, and a second very long straight wire carries a 10.1-a current westward. the wires are parallel to each other and are 24.7 cm apart. calculate the resulting magnetic for

Answers

The value of resulting magnetic field is 3.36 × 10⁻⁵ T.

To calculate the resulting magnetic field, first consider that the magnetic fields produced by the two wires will have opposite directions due to the opposite current directions.

Use the formula for the magnetic field produced by a straight wire carrying current:

B = (μ₀ * I) / (2 * π * d)

Where B is the magnetic field, μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A), I is the current, and d is the distance from the wire.

For the 12.4-A current wire:
B₁ = (4π × 10⁻⁷ T·m/A * 12.4 A) / (2 * π * 0.247 m)

For the 10.1-A current wire:
B₂ = (4π × 10⁻⁷ T·m/A * 10.1 A) / (2 * π * 0.247 m)

Since the magnetic fields have opposite directions, find the difference to get the resulting magnetic field:

Resulting Magnetic Field = B₁ - B₂

The resulting magnetic field is approximately 3.36 × 10⁻⁵ T.

To know more about permeability click on below link:

https://brainly.com/question/7670840#

#SPJ11

a 1.80-m-long pole is balanced vertically with its tip on the ground. it starts to fall and its lower end does not slip. what will be the speed of the upper end of the pole just before it hits the ground? [hint: use conservation of energy.]

Answers

The velocity of the upper end of the pole just before it hits the ground is 5.27 m/s.

When a 1.80-meter-long pole is balanced vertically with its tip on the ground, and it begins to fall, the velocity of the upper end of the pole just before it hits the ground can be determined using the conservation of energy.

The kinetic energy of the pole just before it hits the ground is equal to the potential energy of the pole just before it begins to fall. When the pole is at rest, its potential energy is maximum, which is given by mgh, where m is the mass of the pole, g is the acceleration due to gravity, and h is the height of the center of mass of the pole.

The center of mass of the pole is situated at a height of 0.9 meters above the ground.Conservation of energy is defined as the potential energy of the pole just before it starts to fall being equal to the kinetic energy of the pole just before it hits the ground.

Thus, the kinetic energy of the pole just before it hits the ground is given by K = 1/2 mv², where v is the velocity of the upper end of the pole just before it hits the ground.The potential energy of the pole just before it begins to fall is mgh, where m is the mass of the pole, g is the acceleration due to gravity, and h is the height of the center of mass of the pole.

The center of mass of the pole is situated at a height of 0.9 meters above the ground. Therefore, the potential energy of the pole just before it begins to fall is given by PE = mgh + mg(0.9)Since the pole starts to fall from rest, its initial velocity is zero.

Therefore, its final kinetic energy is K = 1/2 mv². According to the law of conservation of energy, the potential energy of the pole just before it begins to fall is equal to the kinetic energy of the pole just before it hits the ground.

Therefore, PE = K or mgh + mg(0.9)

= 1/2 mv²v² = 2gh + 1.8gvmv

= √(2gh + 1.8gv)

= √2gh + √1.8gv,

Where h = 0.9 m, g = 9.8 m/s², and v = mv.

Therefore, mv = √2gh + √1.8gvmv

= √2(9.8)(0.9) + √1.8g(mv)mv - √1.8g(mv)

= √2(9.8)(0.9)mv (1 - √1.8g)

= √(2(9.8)(0.9))v

= √(2(9.8)(0.9))/(1 - √1.8g)

= 5.27 m/s

To learn more about : velocity

https://brainly.com/question/80295

#SPJ11

when a box is at rest on a level floor, forces are exerted between the atoms in the bottom surface of the box and atoms in the top surface of the floor. why does the floor not exert a frictional force on the box?

Answers

When a box is at rest on a level floor, the floor does not exert a frictional force on the box because there is no relative motion between the box and the floor.

In this situation, the forces between the atoms in the bottom surface of the box and atoms in the top surface of the floor are balanced, resulting in a net force of zero.

The forces present are the gravitational force pulling the box downward and the normal force exerted by the floor, pushing the box upward. These forces cancel each other out, keeping the box at rest with no frictional force acting on it.

Hence, when a box is at rest on a level floor, the floor does not exert a frictional force on the box because there is no relative motion between the box and the floor.

To know more about frictional force, refer here:

https://brainly.com/question/30280752#

#SPJ11

An object moving at a constant speed requires 6.0 s to go once around a circle with a diameter of 4.0 m. What is the magnitude of the instantaneous acceleration of the particle during this time? a. 2.2 m/s^2 b. 2.7 m/s^2 c. 3.3 m/s^2 d. 3.8 m/s^2 e. 4.4 m/s^2

Answers

The magnitude of the instantaneous acceleration of the object during this time is approximately 2.2 m/s^2 (option a).

To find the magnitude of the instantaneous acceleration of the object moving in a circle, we will first find the object's speed and then use the formula for centripetal acceleration. Here's a step-by-step explanation:

1. Determine the circle's radius:
The diameter of the circle is given as 4.0 m, so the radius (r) is half of that: r = 4.0 m / 2 = 2.0 m.

2. Calculate the circumference of the circle:
Circumference (C) = 2 * π * r = 2 * π * 2.0 m ≈ 12.57 m.

3. Calculate the object's speed:
The object takes 6.0 s to go once around the circle. Therefore, its speed (v) is the circumference divided by the time: v = C / t = 12.57 m / 6.0 s ≈ 2.095 m/s.

4. Calculate the centripetal acceleration:
The formula for centripetal acceleration (a_c) is a_c = v^2 / r. Substitute the values of v and r into the formula: a_c = (2.095 m/s)^2 / 2.0 m ≈ 2.2 m/s^2.

So, the magnitude of the instantaneous acceleration of the object during this time is approximately 2.2 m/s^2 (option a).

To know more about instantaneous acceleration, refer here:

https://brainly.com/question/13149078

#SPJ11

explain how one sample of a metal can have a greater heat capacity than another metal with a greater specific heat capacity

Answers

When it comes to the heat capacity of metals, two important factors are specific heat capacity and mass. It is possible for a sample of a metal with lower specific heat capacity to have a greater heat capacity than a metal with a higher specific heat capacity.

Heat capacity, in general, is the amount of heat that a substance can absorb before its temperature changes. The specific heat capacity is the amount of heat that must be absorbed by one unit of mass of a material to raise its temperature by one degree Celsius or Kelvin. It is a measure of how effectively the material can store heat.

Specific heat capacity is dependent upon the nature of the material itself, the temperature, and the pressure under which the material is measured. This means that two different materials can have different specific heat capacities.

For example, the specific heat capacity of copper is 0.385 J/g·K, while the specific heat capacity of iron is 0.449 J/g·K. This implies that it takes more energy to raise the temperature of iron than copper by the same amount, given the same mass and initial temperature.

Mass, on the other hand, determines how much heat energy is required to raise the temperature of the object. The more mass an object has, the more heat energy it will require to raise the temperature by the same amount.

Therefore, even though a metal might have a lower specific heat capacity, if it has a greater mass, it will have a greater heat capacity than a metal with a higher specific heat capacity and less mass. In conclusion, two metals with different specific heat capacities can have different heat capacities if one has a greater mass than the other.

To know more about metals, refer here

https://brainly.com/question/4701542#

#SPJ11

a small bar magnet experiences a 1.70×10−2 n⋅m torque when the axis of the magnet is at 45.0∘ to a 5.00×10−2 t magnetic field. so given theta the torque and u0 we have
u0= torque / BSINTHETA
IT KEEPS COMING OUT WRONG
THE UNITS I BELIEVE ARE A*m^2 i BELIEVE. SO PLEASE SOMEONE HELP ASAP

Answers

The magnetic dipole moment of the bar magnet is approximately 0.038 A*m^2.

To calculate the magnetic dipole moment of the bar magnet, we can use the equation: μ = τ / (B sinθ)

where μ is the magnetic dipole moment, τ is the torque experienced by the magnet, B is the magnitude of the magnetic field, and θ is the angle between the magnetic field and the axis of the magnet.

Substituting the given values, we get:

[tex]μ = (1.70* 10^-2 N*m) / (5.00*10^-2 T * sin45°)[/tex]

μ ≈ 0.038 A*m^2

Note that the units of magnetic dipole moment are Am^2 or J/T, which are equivalent. The units of torque are Nm, and the units of magnetic field are T, as given in the problem.

Therefore, the magnetic dipole moment of the bar magnet is approximately 0.038 A*m^2.

To learn more about dipole moment here:

https://brainly.com/question/14140953

#SPJ11

7. (a) How much heat energy would be required to convert 2.5kg of ice at 10 °C to steam at 100 °C?​

Answers

Answer:

the answer up top is correct

similarities and differences between the last time the globe warmed and the climate changes occurring today.

Answers

The similarity between the last time the globe warmed and the climate change occurring today is that both are caused by the emission of greenhouse gases into the atmosphere.

Greenhouse gases trap heat from the sun in the atmosphere, causing the earth's temperature to increase. The difference between the two is that the current warming is happening much faster than the last time the globe warmed. This is largely due to the amount of greenhouse gases that have been released into the atmosphere since the industrial revolution. In addition, the current warming is affecting the global climate in more extreme ways than the last time the globe warmed, with more frequent and intense storms, droughts, and heatwaves.

learn more about climate change Refer:brainly.com/question/16945209

#SPJ1

how many meters does a tossed baseball fall beneath a straight-line path in traveling for 1 s ? for 2 s ?

Answers

A baseball tossed in a straight-line path will fall 4.9 meters below the path in 1 second and 19.6 meters below the path in 2 seconds.

When a baseball is thrown, the amount of distance it falls below a straight-line path in 1 second is given by the equation

d = 1/2gt^2,

where d is the distance, g is the acceleration due to gravity, and t is the time.

In the first case, we have t = 1 second, so we can calculate d:

d = 1/2 (9.8 m/s^2)(1 s)^2

d = 4.9 meters.

In the second case, we have t = 2 seconds, so we can calculate d:

d = 1/2 (9.8 m/s^2)(2 s)^2

d = 19.6 meters.

Therefore, a baseball will fall 4.9 meters below the path in 1 second and 19.6 meters below the path in 2 seconds.

For more such questions on straight-line path, click on:

https://brainly.com/question/25881219

#SPJ11

a 32-kg child decides to make a raft out of empty 1.0-l water bottles and duct tape. neglecting the mass of the duct tape and plastic in the bottles, what minimum number of water bottles will the child need to be able to stay dry on the raft?

Answers

Ignoring the mass of duct tape and plastic in the bottles, a child will need at least 4 water bottles to stay dry on the raft. The child will need at least four water bottles to stay dry on the raft.

The buoyancy force exerted by the water on the raft must be greater than or equal to the weight of the child to keep the child afloat and dry on the raft. The buoyancy force is given by Archimedes' principle, which states that it is equal to the weight of the water displaced by the raft.

The volume of each 1.0 L water bottle is 0.001 m^3. The density of water is approximately 1000 kg/m^3. Therefore, each water bottle has a buoyant force of:

Buoyant force = Volume of water displaced x Density of water x Acceleration due to gravity

Buoyant force = 0.001 m^3 x 1000 kg/m^3 x 9.81 m/s^2

Buoyant force = 9.81 N

To find the minimum number of water bottles needed to keep the child afloat, we need to divide the weight of the child by the buoyant force of one water bottle:

Minimum number of water bottles = Weight of child / Buoyant force per bottle

Minimum number of water bottles = 32 kg / 9.81 N

Minimum number of water bottles = 3.26 (rounded up to 4)

To learn more about buoyancy force

https://brainly.com/question/13267336

#SPJ4

what is the speed of a wave with a frequency of 2 Hertz and a wavelength of 87 m?

0.023 m/s
43.5 m/s
89 m/s
174 m/s

Answers

Answer:

The answer to your problem is, D. 174 m/s

Explanation:

Formula:

wave speed = frequency * wavelength

Speed of wave = 2Hz × 87m ( Look at question for the numbers )

Speed of wave = 174m/s

Simple math..

Thus the answer to your problem is, 174m/s

a cable that weighs 2.5 lb/ft is used to lift 1000 lb of coal up a mine shaft 400 ft deep. find the work done.

Answers

So, the work done to lift the coal and the cable is 600,000 ft-lb.

To find the work done, you need to consider both the weight of the coal and the weight of the cable. The work done is the force required to lift the objects multiplied by the distance they are lifted.

1. Work done for lifting the coal:
Weight of coal = 1000 lb
Distance lifted = 400 ft
Work done = weight × distance = 1000 lb × 400 ft = 400,000 ft-lb

2. Work done for lifting the cable:
Weight of cable per foot = 2.5 lb/ft
As the cable is lifted, its effective weight decreases since a part of it has already been lifted. To calculate the work done, we need to find the average weight of the cable during the lift.

Average weight = (initial weight + final weight) / 2
Initial weight = 2.5 lb/ft × 400 ft = 1000 lb
Final weight = 0 lb (since it's all lifted)
Average weight = (1000 lb + 0 lb) / 2 = 500 lb

Distance lifted = 400 ft
Work done = average weight × distance = 500 lb × 400 ft = 200,000 ft-lb

3. Total work done:
Total work = work done for coal + work done for cable = 400,000 ft-lb + 200,000 ft-lb = 600,000 ft-lb

Hence, 600,000 ft-lb of work was required to lift the cable and the coal.

To learn more about : cable

https://brainly.com/question/28917025

#SPJ11

Need help double checking this please

Answers

Answer: wrong (kind of)

Explanation:

for a), the number of hydrogens are not balanced, and the type is a combustion

b is right

You will pilot your drone through a series of obstacles. While doing so one of your rescue team members will document the time it takes you to fly from one obstacle to the next. That data will be populated in the following table:

My data table

(position) (distance) (time) (type of maneuver)

(Start to obstacle 1) (13’6”) (9 seconds) (around)

(obstacle 1 to obstacle 2) (31’1”) (20 seconds) (under)

(Obstacle 2 to obstacle 3) (27’3”) (38 seconds) (Precision landing)

(Obstacle 3 to End) (35’6”) (13 seconds) (Precision landing)



You will now present your data using three visual tools. You may create these illustrations using any tools you like Import pictures of your work into this performance task.

I only need someone to do me a graph for Position - Velocity Graph

Answers

The graph will be such that a blue line represents the position of the drone over time, while the orange line represents its velocity.

How to explain the graph

A position-velocity graph, also known as a PV graph or a phase space plot, is a graphical representation of an object's position and velocity over time. It is a two-dimensional graph where the x-axis represents position and the y-axis represents velocity.

As you can see, the drone starts off relatively slow, then accelerates quickly to reach its maximum velocity during the second maneuver, before slowing down again for the final two maneuvers.

This graph gives a visual representation of how the drone's position and velocity change over time during the course of the obstacles.

Learn more about graph on:

https://brainly.com/question/30459583

#SPJ1

Which one is greater among 40°C, 40°F and 40K?​

Answers

Answer:

To compare these temperatures, we need to convert them to the same unit of temperature.

To convert Celsius (°C) to Kelvin (K), we add 273.15 to the Celsius value.

40°C + 273.15 = 313.15 K

To convert Fahrenheit (°F) to Celsius (°C), we can use the formula:

°C = (°F - 32) * 5/9

So,

40°F = (40 - 32) * 5/9 = 4.44°C

Now, we can convert 4.44°C to Kelvin using the formula:

4.44°C + 273.15 = 277.59 K

So the order from smallest to largest temperature is:

40°F < 4.44°C < 40°C < 277.59 K

Therefore, 40K is the greatest temperature among the three.

A copy machine uses a lens to make an image of a page in the physics textbook to print a copy. When the print is regular size, both the book and its image are 16.0 cm from the lens.
A. What is the focal length of this lens?
B. If the lens is moved so that it is 24 cm from the book, what is the distance to the new image?
C. This new image will be (Magnified, reduced, or same size) compared to the original book. How do you know?

Answers

A. The lens's focal length is 8.0 cm.

B. 12.0 cm separates you from the new image.

C. m = -0.5, Because of the negative magnification, we can infer that the image is perpendicular to the object.

What is focal length?

The ability of a lens or curved mirror to focus or bend light depends on its focal length. The distance between the center of the lens or mirror and the point where parallel light rays appear to converge after passing through the lens or reflecting off the mirror is more precisely defined as this distance.

We may infer that the picture is smaller than the original book because the magnitude of the magnification is less than 1 (i.e., the absolute value of the magnification is less than 1).

How do you determine it?

A. The thin lens formula, which is as follows, can be used to determine the focal length of the lens.

1/f = 1/di + 1/do

where f is the lens's focal length, di is its distance from the image, and so is its separation from the object (in this case, the textbook).

We can set di = do = 16.0 cm because the distance between the textbook and its image is 16.0 cm. Using the thin lens formula with these values as inputs, we obtain:

1/f = 1/16.0 + 1/16.0

If we simplify, we get:

1/f = 1/8.0

The result of multiplying both sides by 8.0 is:

f = 8.0 cm

Thus, the lens's focal length is 8.0 cm.

B. We may use the narrow lens calculation once more to get the distance to the new image if the lens is moved to a position where it is 24 cm away from the book.

Since the lens is now 24 cm away from the book, we may set do = 24.0 cm and find di by using the same formula as before:

1/f = 1/di + 1/24.0

1/8.0 = 1/di + 1/24.0

When we simplify and solve for di, we obtain:

di = 12.0 cm

Thus, 12.0 cm separates you from the new image.

C. By using the magnification equation, we may determine whether the new image is bigger, smaller, or the same size as the original book.

m = -di/do

Where m is the image's magnification (a negative sign means the picture is inverted with respect to the object), di is the lens's distance from the image, and do is the lens's distance from the object.

The values from section B allow us to determine the magnification:

m = -12.0/24.0

If we simplify, we get:

m = -0.5

Because of the negative magnification, we can infer that the image is perpendicular to the object.

To know more about focal length, visit:

brainly.com/question/29870264

#SPJ1

Compare the direction that a transverse wave travels with the direction that matter in the wave vibrates

Answers

In a transverse wave, matter vibrates in a direction that is parallel to the wave motion, whereas the direction of energy transfer is perpendicular to the wave's direction of motion.

How can the direction that a transverse wave moves be compared to the direction that the wave's constituent matter vibrates?

A transverse wave transfers energy in a direction that is perpendicular to the way that the wave's constituent matter vibrates. For instance, when a rope is shaken back and forth to produce a wave, the energy moves perpendicular to the rope's motion from one end to the other.

In contrast, the path of energy transfer in a longitudinal wave is parallel to the direction in which the wave's constituent matter vibrates. For instance, as sound waves pass through air, the molecules in the air oscillate back and forth parallel to the wave's motion.

To learn more about transverse wave visit:

brainly.com/question/13863548

#SPJ9

a 10-kg dog is runnng with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 seconds? group of answer choices 125 j 75 j 50 j 100 j

Answers

The minimum work required to stop a 10-kg dog running with a speed of 5.0 m/s in 2.40 seconds is 125 J .

We are given that a 10-kg dog is running with a speed of 5.0 m/s. We need to find the minimum work required to stop the dog in 2.40 seconds. Work done to stop the dog = change in kinetic energy of the dog.

Let the initial velocity of the dog be u = 5.0 m/s.

The final velocity of the dog when it is stopped is v = 0 m/s.

The mass of the dog is m = 10 kg. Work done = 1/2 × m × (v² - u²).

Work done = 1/2 × 10 × (0² - 5.0²)Work done = 1/2 × 10 × (-25)

Work done = -125 J.

We get a negative value for the work done because the direction of work is opposite to the direction of motion of the dog. Therefore, the minimum work required to stop the dog in 2.40 seconds is 125 J.

Know more about kinetic energy   here:

https://brainly.com/question/8101588

#SPJ11

consider the situation shown. a triangular, aluminum loop is slowly moving to the right. eventually, it will enter and pass through the uniform magnetic field region represented by the tails of arrows directed away from you. initially, there is no current in the loop. when the loop is exiting the magnetic field, what will be the direction of any induced current present in the loop?

Answers

The induced current will flow in a clockwise direction to oppose the change in magnetic flux that produced it.

When the loop is exiting the magnetic field, any induced current present in the loop will flow in a clockwise direction. A triangular aluminum loop that is slowly moving to the right enters and passes through a uniform magnetic field region represented by the tails of arrows directed away from you, and it has no current in the loop initially.

What is electromagnetic induction?Electromagnetic induction is the phenomenon where an electromotive force (emf) or a current is generated in a conductor exposed to a varying magnetic field.

An electric current is created if there is relative motion between the conductor and the magnetic field. When a magnetic field is applied to a conductor, the electrons in the conductor are influenced by the magnetic field, causing them to move,

resulting in the creation of an electric current.The direction of an induced current is determined by Lenz's law, which states that the direction of an induced current is such that it opposes the change in magnetic flux that generated it. In this situation, when the loop is exiting the magnetic field,

To learn more about :  flux

https://brainly.com/question/29221352

#SPJ11

an object is located 18 cm from a concave mirror whose focal length is 6 cm. the size of the object is 3 cm. what is the position of the image

Answers

The  image formed is real, inverted, and reduced in size.

As given, an object is situated 18 cm from a concave mirror with a focal length of 6 cm. The size of the object is 3 cm. To find out the position of the image, we need to follow the below-given steps:Calculation:Using the formula,

1/f = 1/u + 1/v, where f is the focal length,

u is the distance between the object and the mirror, and v is the distance between the image and the mirror.

1/f = 1/u + 1/v(1/6) = (1/18) + (1/v)1/v = 1/6 - 1/18v = -9 cm (Image is formed at 9 cm behind the mirror)Thus,

the position of the image is 9 cm from the concave mirror.To calculate the magnification of the image, use the formula:

Magnification (m) = v/u

Given that u = -18 cm (as the object is on the left-hand side),

and v = -9 cm

Magnification (m) = -9 / (-18)

= 0.5It indicates that the image formed is half the size of the object.

To learn more about : inverted

https://brainly.com/question/15884393

#SPJ11

a spring is the only force pushing on an object in the horizontal direction. the spring was initially compressed 10.0 cm, accelerating a 3.00 kg block from rest to a final speed of 2.00 m/s (moving horizontally). what is the spring constant of the spring?

Answers

The spring constant of the spring is 1200 N/m.

The Potential energy stored within the spring is given by way of:

PE = (1/2)kx²

The kinetic strength of a shifting object is given by:

KE = (1/2)mv²

At the start, the potential energy of the spring is:

PE = (1/2)kx² = (1/2)k(0.1)² = 0.005k J

In the end, the kinetic energy of the block is:

KE = (1/2)mv² = (1/2)(3.00 kg)(2.00 m/s)² = 6.00 J

Since energy is conserved, we can set the initial energy equal to the final energy and solve for k

0.005k = 6.00

k = 1200 N/m

Potential energy is a concept in physics that refers to the energy that an object possesses due to its position or configuration relative to other objects or forces. It is a type of energy that is stored in an object and has the potential to be converted into other forms of energy, such as kinetic energy, which is the energy of motion.

The potential energy of an object can be calculated based on its position or configuration, and it is proportional to its mass and height above a reference point, as well as other factors such as the strength of gravitational or other forces. For example, a ball held at the top of a hill has potential energy due to its height above the ground, and this energy can be converted into kinetic energy as the ball rolls down the hill.

To know more about Potential energy visit here:

brainly.com/question/24284560

#SPJ4

to create a low pass filter from an inverting op amp configuration, one has to: group of answer choices add a capacitor in series with the input resistance add a capacitor in parallel with the feedback resistor both a and b none of the above

Answers

To create a low pass filter from an inverting op-amp configuration, one has to add a capacitor in parallel with the feedback resistor, which corresponds to option B in your group of answer choices. Option b) is the right answer.


1. Start with an inverting op-amp circuit, which typically consists of an operational amplifier (op-amp) with an input resistor (R1) connected to the inverting input and a feedback resistor (R2) connected between the inverting input and the output.


2. Add a capacitor (C) in parallel with the feedback resistor (R2). This step corresponds to option B in your question.


By adding the capacitor in parallel with the feedback resistor, we create a low pass filter circuit. The purpose of a low pass filter is to allow low-frequency signals to pass through while attenuating (reducing) the amplitude of higher-frequency signals.


The capacitor's impedance decreases as the frequency of the input signal increases, which means that more of the signal will pass through the capacitor and less through the feedback resistor. This results in a lower gain for higher-frequency signals, effectively filtering them out. Therefore, the answer is option b).

Know more about capacitor here:
https://brainly.com/question/17176550

#SPJ11

The complete question is:

To create a low pass filter from an inverting op amp configuration, one has to: group of answer choices

a) add a capacitor in series with the input resistance

b) add a capacitor in parallel with the feedback resistor

c) both a and b none of the above.

what causes full duplex to transmit and receive simultaneously? question 23 options: a) there are two wires designated for receiving and for transmitting b) there are four wires: one wire pair for receiving and another for transmitting. c) there is one wire designated for receiving and another for transmitting d) full duplex is unable to transmit and receive simultaneously

Answers

b) There are four wires: one wire pair for receiving and another for transmitting.

The cause for full-duplex to transmit and receive simultaneously is that there are four wires: one wire pair for receiving and another for transmitting. A full duplex is a communication method used for the transmission of data in both directions. It allows data transmission to occur simultaneously in both directions. Full duplex communication is different from half-duplex communication, where only one direction of data transmission is possible at a time. In full-duplex communication, there are four wires, one pair of wires for transmitting data and another pair of wires for receiving data. The transmitter uses the transmitting pair of wires, and the receiver uses the receiving pair of wires. Since data transmission takes place simultaneously in both directions, the four wires in full-duplex communication are designated for transmitting and receiving data.

Learn more about wires here:

https://brainly.com/question/16452786

#SPJ11

Other Questions
martin van buren argued that a strong national party is essential for . multiple choice question. decentralization patriotism democracy Divide 2x^4-9x^3 5x^2 3x-8 by x^2-4x 1 and verify the division algorithms Which expression is equivalent to 4(15 - 7)? from a ph meter titration curve a student experimentally determines the pka of benzoic acid to be 4.06. calculate the experimental ka for benzoic acid. Q. Which of the following statements is FALSE? A. Financial advisors recommend saving a set amount each month for emergencies. B. To find out what your actual expenses are, you should track all of your expenses and purchases for one month. C. When estimating your expected income for your budget, estimate on the high side. D. If you spend less than you budgeted for, you are under budget. What are the common reducing agent evaluate the question when m=8 m^2 + 9 Which statement about f(x) = -x squared + 8x-7 is true? the primary purpose of the basic economic order quantity model is: question 4 options: to calculate the reorder point, so that replenishments take place at the proper time to minimize the sum of ordering cost and holding cost to minimize the sum of carrying cost and holding cost to calculate the optimum safety stock you are using a radioactive isotope to measure the age of a rock in your lab. the half-life of the isotope is 300 million years and the ratio of parent to daughter particles is 1/4. how old is the rock? bureaucracies are characterized by . group of answer choices standardization efficiency specialization decentralization increased flexibility As used in this sentence, what does the word yielded mean?O A.O. B.O C.collecteddesignedproducedOD. open There are 8,246 registered to vote in the town of mayfield. About how many people voted in the election? Explain(there are 74 voters) A researcher wants to construct a 98% confidence interval for the proportion of elementary school students in Seward County who receive free or reduced-price school lunches. A state-wide survey indicates that the proportion is 0.60. Using this estimate, what sample size is needed so that the confidence interval will have a margin of error of 0.07?Question 1 options:826518919 Complete the story using the vocabulary provided. Make all necessary changes. Not all options will be used. find the value of x. the is the part of the mind that establishes rules, restrictions, and prohibitions in psychoanalytic theory. a. id b. ego c. superego d. obsession Mrs. Harper is teaching a 5th grade class. She isstanding 6 meters in front of Annie. Javier issitting to Annie's right. If Javier and Mrs. Harperare 8 meters apart, how far apart are Annie andJavier? If necessary, round to the nearest tenth.This is a Pythagorean theorem word problem Is Does eating less fat increase a mouses life span a good scientific question? Which of the following is true for both stocks and bonds?A. They are interest-bearing assets.B. They are financial assetsC. They are risk-free assetsD. They are equityE.They are ownership in a company