Answer:
it's ahfdfhhh hhgfdjjjjuyggffdddcff
100 J of work was done to lift a 10-N rock and set it at Position A near the edge of a cliff.
1. If the 100 Joules of work lifted the rock to the top of the cliff, how much potential energy did the rock gain?
2. At point C, the rock's potential energy will be
3. The rock's kinetic energy at point A is
4. At point B, some of the rock's potential energy will be changed to Kinetic energy
5. What is the mass of the rock?
6. What is the rock's velocity just before it hits the ground?
The rock to the right is sitting at the top of a ramp. I wonder how much work it required to get that rock up there.
Answer:
lol
Explanation:
A cyclist on a training ride records the distance she travels away from home. The data only shows the first150 minutes of the ride before her cycling computer ran out of battery.
Answer:
A) 58 km
B) 30 mins
Explanation:
In pic details
graph in pic
PLEASE HELP ON THIS QUESTION
[tex]r = 1.29×10^8\:\text{m}[/tex]
Explanation:
According to Newton's law of universal gravitation, the gravitational force between Uranus and Miranda is
[tex]F_G = G\dfrac{M_UM_M}{r^2}[/tex]
where [tex]M_U[/tex] is the mass of planet Uranus, [tex]M_M[/tex] is the mass of its satellite Miranda, r is the distance between their centers and G is the universal gravitational constant. Moving the variable r to the left side, we get
[tex]r^2 = G\dfrac{M_UM_M}{F_G}[/tex]
Taking the square root of the equation above, we get
[tex]r = \sqrt{G\dfrac{M_UM_M}{F_G}}[/tex]
Plugging in the values, we get
[tex]r = \sqrt{(6.67×10^{-11}\:\text{N-m}^2{\text{/kg}}^2)\dfrac{(8.68×10^{25}\:\text{kg})(6.59×10^{19}\:\text{kg})}{2.28×10^{19}\:\text{N}}}[/tex]
[tex]\:\:\:\:\:=1.29×10^8\:\text{m}[/tex]
A 2457 kg car moves with initial speed of 18 ms-l. It is stopped in 62 m by its brakes.
What is the force applied by the brakes?
Answer:
Explanation:
The work of the brakes will equal the initial kinetic energy of the car
Fd = ½mv²
F = mv²/2d
F = 2457(18²) / (2(62))
F = 6,419.903...
F = 6.4 kN
Acceleration of a Car A car traveling along a straight road at accelerated to a speed of over a distance of ft. What was the acceleration of the car, assuming that it was constant
Answer:
how many feet?
Explanation:
This is two or more elements chemically combined in a fixed ratio.
Example: water, carbon dioxide, sodium chloride
3) A force of magnitude Fx acting in the x-direction on a 2.00 kg particle varies in time as shown
in FIGURE 2. Find
a) The impulse of the force
b) The final velocity of the particle if it is initially at rest
c) The final velocity of the particle if it is initially moving along the x-axis with velocity
of -2.00 ms -1
Answer:
a) Impuise of force =F∗?(t) = area of F-T graph area= impulse =triangle + rectangle + triangle = 0.5*4*2 + 4*1 + 0.5*4*2 = 12 N-s (b) impulse = change in momentum \(= mExplanation:
MCQ
A body of mass 5kg is pushed for distance x with accleration a. Then workdone against static friction is
1.ma*X cosB
2.ma*X sinB
3.zero
4.ma/X
Answer:
ma*XsinB
option 2 is correct
The vertical position of the 100-kg block is adjusted by the screw activated wedge. Calculate the moment which must be applied to the handle of the screw to raise the block. The single thread screw has square threads with a mean diameter of 30 mm and advances 10 mm each complete turn. The coefficient of friction for the screw threads is 0.24, and the coefficient of friction for all the mating surfaces of the block and the wedge is 0.40. Neglect friction at the ball joint A
We have that for the Question "" it can be said that Calculate the moment which must be applied to the handle of the screw to raise the block is
M = 7.30 N.mFrom the question we are told
The vertical position of the 100-kg block is adjusted by the screw activated wedge. Calculate the moment which must be applied to the handle of the screw to raise the block. The single thread screw has square threads with a mean diameter of 30 mm and advances 10 mm each complete turn. The coefficient of friction for the screw threads is 0.24, and the coefficient of friction for all the mating surfaces of the block and the wedge is 0.40. Neglect friction at the ball joint A
Generally the equation for the Block is mathematically given as
[tex]\sum Fy=0[/tex]
[tex]981cos21.80 = R_2cos53.6\\\\R_2=1535N[/tex]
the equation for the Wedge is mathematically given as
[tex]\sum Fx=0\\\\1535cos36.4=Pcos21.8\\\\P=1331N[/tex]
the equation for the Screw is mathematically given as
[tex]\beta = tan^{-1}*\frac{L}{2*\pi*r} \\\\\beta = tan^{-1}*\frac{10}{2*\pi*(15)} \\\\\\beta = 6.06\\\\\theta = tan^{-1}*0.25 \\\\\theta = 14.04\\\\\\Therefore\\\\\theta + \beta = 20.1\\\\[/tex]
Therefore
[tex]M = Pr tan (\theta + \beta)\\\\M = 1331(0.015) tan20.09\\\\M = 7.30 N.m[/tex]
For more information on this visit
https://brainly.com/question/23379286
Accelerations are produced by
A. Masses
B.accelerations
C. Velocities
D.unbalanced, net forces
plz help me on this question thank you
Answer:
D
Explanation:
The oscillation of the 2.0-kg mass on a spring is described by x = 3.0 cos (4.0 t) where x is in centimeters and t is in seconds. What is the force constant k of the spring?
The force constant k of the spring, if The oscillation of the 2 kg mass of spring is described by x = 3.0 cos (4.0 t) is 32 N / m.
What is force?Force is the influence of either pull or pushes in the body. Basically, gravitation forces, nuclear forces, and friction forces are the types of forces. For e.g. when the wall is hit by a hand then a force is exerted by the hand on the wall as well as the wall also exerts a force on the hand. There are different laws given to Newton to understand force.
Newton is a unit of force used by physicists that is part of the International System (SI). The force required to move a body weighing one kilogram one meter per second is known as a newton.
Given:
The mass of the block, m = 2 kg,
The oscillation of spring, x = 3 cos 4t,
Calculate the omega by comparing the standard equation given below,
[tex]x = A cos \omega t[/tex]
ω = 4
Calculate the spring constant by the formula given below,
[tex]\omega = \sqrt{\frac{k}{m} }[/tex]
4² = k / 2
k = 32 N / m
Therefore, the force constant k of the spring, if The oscillation of the 2 kg mass of spring is described by x = 3.0 cos (4.0 t) is 32 N / m.
To know more about Force:
https://brainly.com/question/13191643
#SPJ2
An object of mass m is hanging by a string from the ceiling of an elevator. The elevator is moving down at constant speed. What is the tension of the string?
A. Zero
B. Equal to mg
C. Less than mg
D. Greater than mg
Answer:
D. Greater than mg
Explanation:
According to Newton’s second law of motion, the net force equals mass times acceleration. We are going to use a free body diagram (force diagram) to show that the equation of the motion is given by
T – mg = – ma
Thereby,
T = mg – ma
and the answer is: (d)
D. Greater than mg
_________________________________
(hopet his helps can I pls have brainlist (crown)☺️)
what memory are you using to remember who the president of the united states is
Answer:
The First 8 Presidents
For this exercise, we're going to use a silly story made of silly sentences. The letters that represent the last names of these presidents are W, A, J, M, M, A, J, V. One silly sentence to help you remember this sequence is: Wilma and John made merry and just vanished
working memory.
sensory memory.
short-term memory.
long-term memory.
Velocity and Acceleration Quick Check
C
D
E
During which of the labeled time segments is the object moving forward but slowing down?
(1 point)
Ο Α
0 С
OD
ОВ
Answer:
Explanation:
1 Object C has an acceleration that is greater than the acceleration for D.
2 B
3 17M
4 The velocity is zero.
5 a straight line with negative slope
just took it
A 2 kg ball is rolling down a hill at a constant speed of 4 m/s. How much kinetic energy does the ball have?
How much distance does a car travel with a speed of 2m/s in 15 min?
Explanation:
1 minute is 60 seconds so you multiply 60 * 15 and then multiply that answer * 2
If the voltage across a 5-F capacitor is 2*e^-3
V find the current and the power
Tectonic plate movement is the reason why northern California has a very different landscape than southern California. Two different tectonic plates, each moving in different directions, border the western side of the North American Plate. Use the map to identify the two tectonic plates that border the North American Plate to the west.
Answer:
Remember, NORTH ^, EAST >, SOUTH v, WEST <
Explanation:
It doesn't have to be a super complex answer. All you have to do is look to the left (west) of the North American plate. What are the 2 plates that you see? The Pacific and the Juan de Fuca, yeah? To the South, there is the Cocos amongst a few others.
I am not going to share the answer for sure as I haven't completed the test yet but that's how I'm solving it. You should write the answer in your own words anyways. Hope this helps! Have a good day :)
Answer:
The Juan de Fuca Plate and the Pacific Plate both border the west side of the North American Plate.
Explanation:
Edmentum
What do alcohol, drugs, and tobacco all have in common?
All have some medicinal value.
All are harmful to the body.
All are depressants.
All are stimulants.
Answer:
all are harmful to the body
At the molecular level, as the kinetic energy increases, what happens to the temperature?
decreases
increases
stays the same
Answer: increases
Explanation:
Temperature is a measure of the average velocity of the molecular particles. The faster they go, the higher the temperature.
Which is the most famous book of the philosopher Alexis karpouzos? I think it is the ''Cosmology, philosophy and physics''.
Answer: Yes, the " Cosmology, philosophy and physics" is the most famous book of the philosopher, Alexis karpouzos. But and the other books are important. For example, the " The self-criticism of science", the "Universal conscilusness" and the "Non-duality".
Explanation:
c. Boat travels north then west
A boat travels 76.0 km due north in 8.0 hours then 56.0 km due west in 5.0 hours.
Determine the direction (as a bearing) of the average velocity (to 1 decimal places) of the boat in the 8 + 5 hour period.
PLEASE HELP!!
Answer:
Explanation:
θ = arctan(56.0/76.0) = 36.4° West of North
average velocity is √(56.0² + 76.0²) / (8 + 5) = 94.4/13 = 7.26 m/s
An object is dropped from a vertical height of 1.89 m above the balcony level. What is the object’s speed when it is 2.20 m below the balcony level if 10.0% energy is lost due to the air resistance? Does it matter when to apply 10% loss before V calculations or after? [8.49m/s] [yes it does, 0.9Energy result in √0.9Velocity]
a.
The object's speed at 2.20 m below balcony level is 8.74 m/s
Let the balcony level be 0 m and the height above the balcony level be positive and height below the balcony level negative.
Using the principle of conservation of energy, the total energy at a vertical height of 1.89 m above the balcony level equals the total mechanical energy when the object is 2.20 m below the balcony level and
So, E = E'
U + K + f = U' + K' + f'
where U = initial potential energy at 1.89 m = mgh, K = initial kinetic energy at 1.89 m = 0 J(since it is released from rest), f = energy loss at 1.89 m = 0 J, U' = final potential energy at 2.20 m below balcony level = mgh', K = final kinetic energy at 2.20 m = 1/2mv², f' = energy loss at 1.89 m = 10%U = 0.10mgh(since 10% of the initial energy is lost).
So,
U + K + f = U' + K' + f'
mgh + 0 + 0 = mgh' + 1/2mv² + 0.10mgh
mgh = mgh' + 1/2mv² + 0.10mgh
Dividing through by m, we have
gh = gh' + 1/2v² + 0.10gh
So, gh - 0.10gh = gh' + 1/2v²
0.90gh = gh' + 1/2v²
1/2v² = 0.90gh - gh'
1/2v² = g(0.90h - h')
v² = 2g(0.90h - h')
Taking square-root of both sides, we have
v = √[2g(0.90h - h')]
where v = velocity of object at 2.20 m below balcony level, h = height above the balcony level = 1.89 m, h' = height below the balcony level = -2.20 m and g = acceleration due to gravity = 9.8 m/s²
Substituting the values of the variables into the equation, we have
v = √[2g(0.90h - h')]
v = √[2 × 9.8 m/s²{0.90 × 1.89 m - (-2.20 m)}]
v = √[2 × 9.8 m/s²(1.701 m + 2.20 m)]
v = √[2 × 9.8 m/s²(3.901 m)]
v = √[76.4596 m²/s²]
v = 8.74 m/s
So, the object's speed at 2.20 m below balcony level is 8.74 m/s
b.
Yes it does matter when we apply 10% loss before V calculations
We need to apply the 10 % loss before V calculations because this would give us a proper value for V since the energy is lost before V is obtained.
So, yes it does matter when we apply 10% loss before V calculations
Learn more about speed of a falling object here:
https://brainly.com/question/18732868
An empty cylindrical barrel is open at one end and rolls without slipping straight down a hill. The barrel has a mass of 15.0 kg, a radius of 0.400 m, and a length of 0.800 m. The mass of the end of the barrel equals a fourth of the mass of its side, and the thickness of the barrel is negligible. The acceleration due to gravity is =9.80 m/s2.
What is the translational speed f of the barrel at the bottom of the hill if released from rest at a height of 33.0 m above the bottom?
Hi there!
We can use work and energy to solve this problem.
We know that:
Ei = Ef
Ei = Potential energy = mgh
Ef = Rotational kinetic + Translational kinetic = 1/2Iω² + 1/2mv²
The barrel is comprised of a hollow cylinder and disk-shaped bottom, so:
I (hollow cylinder) = mr²
I (disk) = 1/2mr²
Calculate the moment of inertias of each.
Since the mass on the base is one-fourth of its side:
x = mass of side
x + x/4 = 15
4x + x = 60
5x = 60
x = 12 kg
end mass = 3 kg
Solve for each moment of inertia:
Side: (12)(0.4²) = 1.92 Kgm²
Bottom: 1/2(3)(0.4²) = 0.24 Kgm²
Side + bottom = 2.16 Kgm²
We can now solve:
mgh = 1/2mv² + 1/2(2.16)v²/r²
(15)(9.8)(33) = 1/2(15)v² + 1/2(13.5)v²
4851 = 14.25v²
v = 18.45 m/s
Uranus (mass = 8.68 x 1025 kg) and its moon Miranda (mass = 6.59 x 1019 kg) exert a gravitational force of 2.28 x 1019 N on each other. How far apart are they? cs [?] x 10?'m Coefficient (green) Exponent (yellow) Enter
Answer:
Explanation:
F = GMm/d²
d = √(GMm/F)
d = √(6.674e-11(8.68e25)(6.59e19) / 2.28e19)
d = 1.29398e8 = 1.29 x 10^8 m center to center
Answer:
1.29 x 10^8 m apart
Explanation:
Works in Acellus!
A thin piece of semiconducting silicon will be used to fabricate an electrical device. This layer is 0.10 cm thick and cut into a strip 0.50 cm wide by 1.50 cm long. Electrical contacts are placed at opposite ends of its length. The intrinsic carrier concentration of the silicon at room temperature (300K) is 1.0x1010/cm3 and the bandgap energy is 1.12 eV.
Required:
a. If the application of 1.0 volt to the contacts results in a current of 0.019 amps, what is the resistivity in (ohm-cm) of the material?
b. If the material's conductivity is due to doping with aluminum to a level of [Al]= 1x10^17 atoms/cm^3, what is the resulting conductivity "type" and what is the mobility of these "majority" carriers in this material (assuming that the aluminum is fully ionized - i.e. all Al atoms donated electrons).
We have that for the Question "a)what is the resistivity in (ohm-cm) of the material? b) what is the resulting conductivity "type" and what is the mobility of these "majority" carriers in this material"
Answer:
Resistivity = [tex]1.754 ohm-cm[/tex]Conductivity = [tex]6.25*10^{25} cm^3/V-s[/tex]
From the question we are told
This layer is 0.10 cm thick and cut into a strip 0.50 cm wide by 1.50 cm long. The intrinsic carrier concentration of the silicon at room temperature (300K) is 1.0x1010/cm3 and the bandgap energy is 1.12 eV.
A) Resistivity is given as,
[tex]p = \frac{RA}{l}[/tex]
where,
[tex]R = \frac{V}{I}[/tex]
Therefore,
[tex]p = \frac{VA}{Il}\\\\p = \frac{1*(0.1*0.5)}{0.019*1.5}\\\\p = 1.754 ohm-cm[/tex]
B) Conductivity is given as,
[tex]U = \frac{\rho}{pe}\\\\U = \frac{10^{17}}{10^{10}*1.6*10^{-19}}\\\\U = 6.25*10^{25} cm^3/V-s[/tex]
For more information on this visit
https://brainly.com/question/23379286
calculate the surface area of a box whose mass is 200 kg and exerts a pressure of 100 Pascal on the floor.
Answer:
Explanation:
If 2×2 is 4 so 1 kg can be 1 gram if it belive on it self some people change
The car on this ramp starts from rest. When released, it
accelerates at a constant rate. It has an initial position of 12 cm
from the top of the ramp, and has an average velocity of 1.20 m/s
for a total of 1.80 s. Which is the correct final position of the car?
Answer:
Explanation:
s 0.12 + 1.20(1.80) = 2.28 m from the top.
Just before it strikes the ground, what is the watermelon's kinetic energy?
Answer:
Answer: At its lowest point, the kinetic energy of a watermelon just as it touches the ground is zero if it does not touch anything on its way down.
Explanation:
This is because that upon having been dropped from a height, an object no longer has any kinetic energy at all. Kinetic energy transforms to gravitational potential energy during the fall and there's nothing left over for kinetic once you stop accelerating anymore. Fortunately, things don't stay still until they land very often! For example, if a person catches the fruit with his hands after some air resistance slows him down - making him more similar in speed to the lag of the trajectory - then he'll be able to share some of his saved up gravitational potential with that watermelon and do some