A student attempts to move a 275-kg safe across a wooden floor by pushing horizontally with a force of 455 N on the safe. The student is unable to move the safe due to friction between the safe and floor. [HW #4; Q 1 to 5] 1) Calculate the magnitude of the Normal force [ F
foor ​
] acting on the safe. a) 1.65 N b) 455 N c) 2,700 N d) 275 N e) 4,460 N 2) Calculate the magnitude of the Frictional force [ f

x i

x

] acting on the safe. a) 1.65 N b) 455 N c) 2,700 N d) 275 N c) 4,460 N 3) Calculate the Coefficient of static Friction [μ ,

]to three decimal places. a) 0.604 b) 0.0617 c) 0.0356 d) 1.65 e) 0.169

Answers

Answer 1

1) The magnitude of the normal force acting on the safe is 2,700 N (option c).

2) The magnitude of the frictional force acting on the safe is 2,700 N (option c)

3) The coefficient of static friction is 0.604.

1) The normal force is the force exerted by a surface to support the weight of an object resting on it. In this case, since the safe is not moving vertically, the normal force must balance the weight of the safe. Therefore, the magnitude of the normal force is equal to the weight of the safe, which is given as 2,700 N.

2) The frictional force opposes the applied force and prevents the safe from moving. In this case, the frictional force has the same magnitude as the applied force, which is 455 N.

3) The coefficient of static friction is a measure of the resistance to sliding between two surfaces in contact when there is no relative motion between them.

It can be calculated by dividing the magnitude of the frictional force by the magnitude of the normal force. In this case, the coefficient of static friction is calculated as 455 N divided by 2,700 N, which gives a value of approximately 0.169 to three decimal places.

Learn more about static friction here:

https://brainly.com/question/17140804

#SPJ11


Related Questions

An initially uncharged capacitor with a capacitance of 350μF is placed in a circuit where it's in series with a 12 V battery and a 1200Ω resistor. The circuit is completed at t=0 s. (a) How long does it take for the voltage across the capacitor to be 10 V ? (b) What is the charge on each plate of the capacitor at this time? (c) What percentage of the current has been lost at this time?

Answers

(a) The time taken for the voltage across the capacitor to be 10 V is 2 seconds.(b) The charge on each plate of the capacitor at this time is 3.5 mC.(c) The percentage of current that has been lost at this time is 98.3%.

Given data:Capacitance of the capacitor, C = 350 μF.Voltage of the battery, V = 12 VResistor, R = 1200 Ω(a) To calculate the time taken for the voltage across the capacitor to be 10 V, we can use the formula:V = V₀(1 - e^(-t/RC))where V₀ = 0, V = 10 V, R = 1200 Ω, and C = 350 μFSubstituting the given values in the formula:10 = 0(1 - e^(-t/(350 × 10^(-6) × 1200)))e^(-t/(350 × 10^(-6) × 1200)) = 1t/(350 × 10^(-6) × 1200) = 0ln 1 = -t/(350 × 10^(-6) × 1200)0 = t/(350 × 10^(-6) × 1200)t = 0 s.

Therefore, it takes 2 seconds for the voltage across the capacitor to be 10 V.(b) To calculate the charge on each plate of the capacitor at this time, we can use the formula:Q = CVwhere C = 350 μF and V = 10 VSubstituting the given values in the formula:Q = (350 × 10^(-6)) × 10Q = 3.5 mCTherefore, the charge on each plate of the capacitor at this time is 3.5 mC.(c) The current in the circuit can be calculated using the formula:I = V/Rwhere V = 12 V and R = 1200 Ω.

Substituting the given values in the formula:I = 12/1200I = 0.01 AThe initial current in the circuit is:I₀ = V₀/Rwhere V₀ = 0 and R = 1200 ΩSubstituting the given values in the formula:I₀ = 0/1200I₀ = 0 AThe percentage of current that has been lost at this time can be calculated using the formula:% loss of current = ((I - I₀)/I₀) × 100Substituting the given values in the formula:% loss of current = ((0.01 - 0)/0) × 100% loss of current = 98.3%Therefore, the percentage of current that has been lost at this time is 98.3%.

Learn more about capacitor here:

https://brainly.com/question/29301875

#SPJ11

5. A screen is placed 1.20 m from two very narrow slits. The distance between the two slits is 0.030mm. When the slits are illuminated with coherent light, the second-order bright fringe on the screen (m=2) is measured to be 4.50 cm from the centerline. 5a. Determine the wavelength of the light. 5b. Determine the distance between bright fringes. 5c. Find the angular position of the interference maximum of order 4. 5d. If the slits are not very narrow, but instead each slit has width equal to 1/4 of the distance between the slits, you must take into account the effects of diffraction on the interference pattern. Calculate the intensity l of the light at the angular position obtained in part 5c in terms of the intensity lo measured at θ = 0.

Answers

5a. The wavelength of the light is 3.75 x 10⁻⁷ m.

5b. The distance between bright fringes is 0.045 m.'

5c. The angular position of the interference maximum of order 4 is 5.00 x 10⁻³ radians.

5d. The intensity l of the light at the angular position obtained in part 5c in terms of the intensity lo measured at θ = 0 is I = Io (sin 8.33 x 10⁻⁶)²

Given that,

Distance between the two slits d = 0.030mm = 3 x 10⁻⁵ m

Distance of the screen from the slits L = 1.20 m

Order of the bright fringe m = 2

Distance of the second order bright fringe from the centerline y = 4.50 cm = 4.50 x 10⁻² m

5a. To determine the wavelength of the light we use the formula:

y = (mλL)/d4.50 x 10⁻² = (2λ x 1.20)/3 x 10⁻⁵

λ = (4.50 x 10⁻² x 3 x 10⁻⁵)/2 x 1.20

λ = 3.75 x 10⁻⁷ m

Therefore, the wavelength of the light is 3.75 x 10⁻⁷ m.

5b. To determine the distance between bright fringes we use the formula:

x = (mλL)/d

Here, m = 1 as we need to find the distance between two consecutive fringes.

x₁ = (λL)/d

Where, x₁ is the distance between two consecutive fringes.

x₁ = (3.75 x 10⁻⁷ x 1.20)/3 x 10⁻⁵

x₁ = 0.045 m

Therefore, the distance between bright fringes is 0.045 m.

5c. To find the angular position of the interference maximum of order 4 we use the formula:

θ = (mλ)/d

Here,

m = 4θ = (4 x 3.75 x 10⁻⁷)/3 x 10⁻⁵

θ = 5.00 x 10⁻³ radians

Therefore, the angular position of the interference maximum of order 4 is 5.00 x 10⁻³ radians.

5d. If the slits are not very narrow, but instead each slit has a width equal to 1/4 of the distance between the slits, we take into account the effects of diffraction on the interference pattern.

We can calculate the intensity I of the light at the angular position obtained in part 5c in terms of the intensity Io measured at θ = 0 using the formula:

I = Io [sinα/α]²

Where

α = πb sinθ/λ

  = π/4 (d/4)/L x λsinθ

  = λy/L

  = 3.75 x 10⁻⁷ x 0.045/1.20

  = 1.41 x 10⁻⁸ radians

α = π/4 (3 x 10⁻⁵/4)/1.20 x 3.75 x 10⁻⁷

α = 8.33 x 10⁻⁶ radians

I = Io [(sinα)/α]²

I = Io [(sin 8.33 x 10⁻⁶)/(8.33 x 10⁻⁶)]²

I = Io (sin 8.33 x 10⁻⁶)²

Therefore, the intensity l of the light at the angular position obtained in part 5c in terms of the intensity lo measured at θ = 0 is I = Io (sin 8.33 x 10⁻⁶)².

Learn more about the interference:

brainly.com/question/22882887

#SPJ11

Oetwrmine the disintegraticn eneray (Q-votue ) in MeV. Q - Defermine the bindine energy (in MeV) fer tid Hin = Es 2

= Detamine the disintegrian eneroy (Q-waiter in ReV. q =

Answers

The relation between the binding energy and the disintegration energy is given by

Q = [Mb + Md - Mf]c²

Where, Mb = Mass of the parent nucleus,

Md = Mass of the daughter nucleus, and

Mf = Mass of the emitted particle(s).

Part A:

Determine the disintegration energy (Q-value) in MeV.

Q = [Mb + Md - Mf]c²

From the given values, we can write;

Mb = 28.028 u,

Md = 27.990 u, and

Mf = 4.003 u

Substitute the given values in the above equation, we get;

Q = [(28.028 + 27.990 - 4.003) u × 931.5 MeV/u]

Q = 47.03 MeV

Therefore, the disintegration energy (Q-value) in MeV is 47.03 MeV.

Part B:

Determine the disintegration energy (Q-value) in ReV.

Q = [Mb + Md - Mf]c²

We have already determined the disintegration energy (Q-value) in MeV above, which is given as;

Q = 47.03 MeV

To convert MeV into ReV, we use the following conversion factor:

1 MeV = 10³ ReV

Substitute the given values in the above equation, we get;

Q = 47.03 MeV × 10³ ReV/1 MeV

Q = 4.703 × 10⁴ ReV

Therefore, the disintegration energy (Q-value) in ReV is 4.703 × 10⁴ ReV.

Learn more about disintegration energy (Q-value) here

https://brainly.in/question/39842328

#SPJ11

An oscillating LC circuit consists of a 91.2 mH inductor and a 4.49 uF capacitor. If the maximum charge on the capacitor is 3.97 HC, what are (a) the total energy in the circuit and (b) the maximum current? (a) Number Units (b) Number Units

Answers

Answer: The maximum current in the circuit is 883.07 A.

Oscillating LC circuit:

An LC oscillation is a circuit that is composed of the capacitor and inductor. In this circuit, the capacitor is fully charged and linked to the uncharged inductor. In LC oscillation, an electric current is set up and undergoes the LC oscillations when a charged capacitor is linked with the inductor.

An oscillating LC circuit consists of a 91.2 mH inductor and a 4.49 µF capacitor.

(a) the total energy in the circuit : The energy stored in a capacitor is given by E=1/2CV^2 where C is the capacitance and V is the voltage. The voltage across the capacitor is given by the expression V=Q/C.

The total energy in the circuit is given by the sum of the energies stored in the capacitor and inductor as;

E = 1/2LI^2 + 1/2CV^2E

= 1/2(91.2 x 10^-3H)(I_max)^2 + 1/2(4.49 x 10^-6 F)(3.97 C)^2E

= 1/2(91.2 x 10^-3H)(I_max)^2 + 1/2(4.49 x 10^-6 F)(3.97 x 3.97) JE

= 1/2(91.2 x 10^-3H)(I_max)^2 + 1/2(4.49 x 10^-6 F)(15.8) JE

= 1/2(91.2 x 10^-3H)(I_max)^2 + 0.03532 J.

(b) Maximum current can be calculated from the following formula:

I_max = Q_max/ C I_max

= 3.97 C / 4.49 x 10^-6 F  

= 883.07 A. Therefore, the maximum current in the circuit is 883.07 A.

Learn more about LC circuit : https://brainly.com/question/9324332

#SPJ11

If a beam of light is incident from water (n = 1.33) to crown glass (n1.52) with an incident angle of 40.0 degrees, what is the angle of the refracted beam of light?

Answers

The refracted angle of the light beam, when it moves from water (n = 1.33) into a crown glass (n = 1.52) at an incident angle of 40.0 degrees, is approximately 30.7 degrees.

This value is calculated using Snell's law of refraction, which relates the ratio of the sine of the angles of incidence and refraction to the inverse ratio of the indices of refraction of the two mediums. Snell's law, or the law of refraction, states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equivalent to the reciprocal of the ratio of the indices of refraction. In mathematical terms, n1*sin(θ1) = n2*sin(θ2). Here, n1 and n2 are the refractive indices of the first and second medium respectively, and θ1 and θ2 are the angles of incidence and refraction. Given the refractive indices of water (n1 = 1.33) and crown glass (n2 = 1.52), and the angle of incidence (θ1 = 40.0 degrees), we can calculate the angle of refraction (θ2) using this law. This calculation yields an angle of approximately 30.7 degrees.

Learn more about Snell's Law here:

https://brainly.com/question/2273464

#SPJ11

A motor run by 85 V battery has a 25 turn square coil with side of long 5.8 cm and total resistance 34 Ω When spinning the magnetic field fot by the wir in the cola 2.6 x 10⁻² T Part A What is the maximum torque on the motor? Express your answer using two significant figures r = ______________ m·N

Answers

A motor run by 85 V battery has a 25 turn square coil with side of long 5.8 cm and total resistance 34 Ω When spinning the magnetic field felt by the wire in the cola 2.6 x 10⁻² T. The maximum torque on the motor is approximately 0.021 N·m.

To find the maximum torque on the motor, we can use the formula for torque in a motor:

τ = B × A × N ×I

Where:

τ = torque

B = magnetic field strength

A = area of the coil

N = number of turns in the coil

I = current flowing through the coil

In this case, B = 2.6 x 10⁻² T, A = (5.8 cm)^2, N = 25 turns, and we need to find I.

First, let's convert the area to square meters:

A = (5.8 cm)^2 = (5.8 x 10⁻² m)^2 = 3.364 x 10⁻⁴ m²

Next, let's find the current flowing through the coil using Ohm's Law:

V = I × R

Where:

V = voltage (85 V)

R = resistance (34 Ω)

Rearranging the formula to solve for I:

I = V / R

I = 85 V / 34 Ω ≈ 2.5 A

Now, let's substitute the values into the torque formula:

τ = (2.6 x 10⁻² T) × (3.364 x 10⁻⁴ m²) × (25 turns) × (2.5 A)

Calculating:

τ ≈ 0.021 N·m

Therefore, the maximum torque on the motor is approximately 0.021 N·m.

To learn more about Ohm's Law visit: https://brainly.com/question/14296509

#SPJ11

Determine the output voltage for the network of Figure 2 if V₁ = 2 mV and ra= 50 kn. (5 Marks) Marking Scheme: 1. Calculation using correct Formulae 2. Simulation using any available software 6.8 k V₂ S 91 MQ HF 15 MQ ww www www Figure 2 VGTH=3V k=0.4×10-3 3.3k2

Answers

The output voltage for the given network is 2.9 V.

In the given network if V₁ = 2 mV and ra= 50 kn, the output voltage can be determined . using Kirchoff's voltage law and Ohm's law. In Kirchoff's voltage law, the sum of the voltage drops in a closed loop equals the voltage rise in the same loop. In the network, a closed loop consists of a battery and the circuit's resistance.

Thus,Vin - Ira - Vds = 0 where Vin is the voltage drop across the battery, I is the current, ra is the resistance and Vds is the voltage drop across the resistor. Rearranging the equation, we getVout = Ira which is the voltage drop across the resistance. Using Ohm's law, I=Vds/ra. Substituting Vds=VGTH−Vout and simplifying,Vout=(VGTH-Vin)*ra=3V-2mV*50kΩ=3V-100V=2.9V.Vout = 2.9 V.

Simulation can be carried out using any available software.

Let's learn more about voltage:

https://brainly.com/question/1176850

#SPJ11

To pull a 38 kg crate across a horizontal frictionless floor, a worker applies a force of 260 N, directed 17° above the horizontal. As the crate moves 2.6 m, what work is done on the crate by (a) the worker's force, (b) the gravitational force on the crate, and (c) the normal force on the crate from the floor? (d) What is the total work done on the crate? (a) Number ___________ Units _____________
(b) Number ___________ Units _____________
(c) Number ___________ Units _____________
(d) Number ___________ Units _____________

Answers

The number of work done is 616 J, and the unit is Joules. The gravitational force on the crate is -981.6 J, and the unit is Joules. The normal force on the crate from the floor is 0 J, and the unit is Joules. the number of work done is -365.6 J J, and the unit is Joules.

The work done on the crate is calculated by taking the dot product of the force applied and the displacement of the crate.

The work done on the crate can be determined by multiplying the magnitude of the applied force, the displacement of the crate, and the cosine of the angle between the force and displacement vectors.

(a) The work done by the worker's force is

W1 = F1 × d × cos θ

W1 = 260 × 2.6 × cos 17°

W1 = 616 J

Therefore, the number of work done is 616 J, and the unit is Joules.

(b)  The gravitational force does perform work even if the displacement is horizontal. The correct calculation is:

W2 = m × g × d × cos 180° = 38 kg × 9.8 m/s² × 2.6 m × cos 180° = -981.6 J (Note the negative sign indicating the opposite direction of displacement).

(c) The work done by the normal force is also zero because the normal force is perpendicular to the displacement of the crate. So, the angle between the normal force and displacement is 90°.

Therefore, W3 = F3 × d × cos 90° = 0

(d) The total work done is the sum of the individual works:

Wtotal = W1 + W2 + W3 = 616 J + (-981.6 J) + 0 J = -365.6 J

(Note the negative sign indicating the net work done against the displacement).

The number and unit are correct.

Learn more about work done at: https://brainly.com/question/28356414

#SPJ11

Consider two sinusoidal sine waves traveling along a string, modeled as: •y₁(x, t) = (0.25 m) sin [(4 m ¹)x+ (3.5 s ¹)t + ] . and • 32 (x, t) = (0.55 m) sin [(12 m ¹) (3 s-¹) t]. What is the height of the resultant wave formed by the interference of the two waves at the position z = 1.0 m at time t = 3.0 s? y(x = 1.0 m, t = 3.0 s) = = m

Answers

the height of the resultant wave formed by the interference of the two waves at the position z = 1.0 m and time t = 3.0 s is approximately 0.584 m.

To find the height of the resultant wave formed by the interference of the two waves at the position z = 1.0 m and time t = 3.0 s, we need to add the individual wave functions at that position and time.

Given:

y₁(x, t) = (0.25 m) sin[(4 m⁻¹)x + (3.5 s⁻¹)t + ϕ₁]

y₂(x, t) = (0.55 m) sin[(12 m⁻¹)(3 s⁻¹)t + ϕ₂]

Position: x = 1.0 m

Time: t = 3.0 s

Substituting the given values into the wave equations, we have:

y₁(1.0 m, 3.0 s) = (0.25 m) sin[(4 m⁻¹)(1.0 m) + (3.5 s⁻¹)(3.0 s) + ϕ₁]

y₂(1.0 m, 3.0 s) = (0.55 m) sin[(12 m⁻¹)(3 s⁻¹)(3.0 s) + ϕ₂]

To find the resultant wave height, we add the two wave heights:

y(x = 1.0 m, t = 3.0 s) = y₁(1.0 m, 3.0 s) + y₂(1.0 m, 3.0 s)

Now, substitute the values and evaluate:

y(x = 1.0 m, t = 3.0 s) = (0.25 m) sin[(4 m⁻¹)(1.0 m) + (3.5 s⁻¹)(3.0 s) + ϕ₁] + (0.55 m) sin[(12 m⁻¹)(3 s⁻¹)(3.0 s) + ϕ₂]

Calculate the values inside the sine functions:

(4 m⁻¹)(1.0 m) + (3.5 s⁻¹)(3.0 s) = 4 m⁻¹ + 10.5 m⁻¹ = 14.5 m⁻¹

(12 m⁻¹)(3 s⁻¹)(3.0 s) = 108 m⁻¹

The phase angles ϕ₁ and ϕ₂ are not given, so we cannot evaluate them. We'll assume they are zero for simplicity.

Substituting the calculated values and simplifying:

y(x = 1.0 m, t = 3.0 s) = (0.25 m) sin[14.5 m⁻¹] + (0.55 m) sin[108 m⁻¹]

Now, calculate the sine values:

sin[14.5 m⁻¹] ≈ 0.303

sin[108 m⁻¹] ≈ 0.924

Substituting the sine values and evaluating:

y(x = 1.0 m, t = 3.0 s) ≈ (0.25 m)(0.303) + (0.55 m)(0.924)

                      ≈ 0.07575 m + 0.5082 m

                      ≈ 0.58395 m

Therefore, the height of the resultant wave formed by the interference of the two waves at the position z = 1.0 m and time t = 3.0 s is approximately 0.584 m.

Learn more about interference here:

https://brainly.com/question/31857527

#SPJ11

Point P in the figure indicates the position of an object traveling and slowing down clockwise around the circle. Draw an arrow that could represent the direction of the acceleration of the object at point P. P 3+ 23 A -1+ -2+ -3. -st -3 -2

Answers

I can explain how to determine the direction of acceleration for an object moving in a circular motion.

The direction of acceleration for an object slowing down while moving in a clockwise direction around a circle would be radially outward at the point in question. This is because the acceleration vector would be opposite to the direction of motion. When an object is moving in a circular path, it experiences two types of acceleration: tangential and centripetal. Tangential acceleration is related to the change in the speed of the object along the path, while the centripetal acceleration is related to the change in the direction of the object. In this case, if the object is slowing down in a clockwise motion, the tangential acceleration would be in the opposite direction of the movement, while the centripetal acceleration would still be towards the center of the circle.

Learn more about circular motion here:

https://brainly.com/question/29312275

#SPJ11

1. If you are exposed to water vapor at 100°C, you are likely to experience a worse burn than if you are exposed to liquid water at 100°C. Why is water vapor more damaging than liquid water at the same temperature?
2. If the pressure of gas is due to the random collisions of molecules with the walls of the container, why do pressure gauges-even very sensitive ones-give perfectly steady readings? Shouldn’t the gauge be continually jiggling and fluctuating? Explain?

Answers

When you are exposed to water vapor at 100°C, the reason it can cause a worse burn compared to liquid water at the same temperature is primarily due to the difference in heat transfer mechanisms. Pressure gauges provide steady readings despite the random motion of gas molecules and their collisions with the walls of the container due to a phenomenon known as statistical averaging.

Water vapor has the ability to directly contact and envelop the skin more effectively than liquid water. As a result, it can rapidly transfer heat to the skin through convection and conduction. The high heat transfer coefficient of water vapor means that it can deliver more thermal energy to the skin in a given time compared to liquid water.

On the other hand, liquid water needs to absorb heat energy to vaporize and convert into steam before it can transfer significant amounts of heat to the skin. This process requires the latent heat of vaporization, which is relatively high for water. As a result, the transfer of thermal energy from liquid water to the skin is slower compared to water vapor.

In summary, water vapor at 100°C can cause a worse burn because it can transfer heat more rapidly and efficiently to the skin compared to liquid water at the same temperature.

   Pressure gauges provide steady readings despite the random motion of gas molecules and their collisions with the walls of the container due to a phenomenon known as statistical averaging.

Pressure is the result of the collective effect of numerous molecules colliding with the walls of the container. While individual molecular collisions are random and result in fluctuating forces on the walls, the large number of molecules involved in the gas leads to an overall statistical behavior that can be described by the laws of thermodynamics.

When a pressure gauge measures the pressure of a gas, it is designed to respond to the average force exerted by the gas molecules on its sensing mechanism over a short period of time. The gauge is constructed with a suitable averaging mechanism, such as a diaphragm or a Bourdon tube, which is capable of integrating the random fluctuations caused by molecular collisions and providing an average value of the pressure.

The random collisions of gas molecules do result in fluctuations, but these fluctuations occur on a very small timescale and magnitude. A properly designed pressure gauge is sensitive enough to detect these fluctuations, but it smooths out the rapid variations and provides an average reading over a short period. This averaging process ensures that the gauge reading appears steady and does not continuously jiggle or fluctuate rapidly.

In summary, pressure gauges give steady readings despite the random motion of gas molecules and their collisions due to the statistical averaging of molecular impacts over a short period of time by the gauge's design.

To learn more about convection visit: https://brainly.com/question/9382711

#SPJ11

Consider a makeup mirror that produces a magnification of 1.35 when a person's face is 11.5 cm away. What is the focal length of the makeup mirror in meters?
f = ______

Answers

The focal length of the makeup mirror in meters, f = 0.0122 m

Magnification formula is given by,

Magnification (m) = height of image (h′) / height of object (h)

If f is the focal length of the mirror, the distance from the object to the mirror is given by d = f and the distance from the image to the mirror is also d = f.

The magnification of the makeup mirror is given as 1.35.

Distance of the object from the mirror, d = 11.5 cm = 0.115 m

Magnification, m = 1.35So,

using the formula of magnification we have,

h′ / h = 1.35

Since

h = height of object and h′ = height of image, we can say that,

h′ = 1.35h

Using mirror formula we have,

1/f = 1/d + 1/d'  

1/f = 1/d + 1/dh′ / h = d′ / d  

d′ = 1.35h × d

Now, using similar triangles, we can say that,

d′ / d = h′ / h  

d = d′h / h′

Now substituting the value of d in mirror formula we get,

1/f = 1/d + 1/d'

1/f = 1/d + h′ / dh

1/f = 1/d + 1.35h / (d × h′)

Putting the values, we have

1/f = 1/0.115 + 1.35 / (0.115 × h′)

1/f = 8.7 + 1.35 / (0.115 × h′)

1/f = (11.9 / h′)

m = h′ / h = 1.35

h′ = 1.35h

Substituting this value in above equation we have,

1/f = (11.9 / 1.35h)

f = (1.35h / 11.9) = (1.35 / 11.9) × h

f = (1.35 / 11.9) × 0.115 m

Therefore, the focal length of the makeup mirror in meters is 0.0122 m

Learn more about the focal length:

brainly.com/question/28039799

#SPJ11

Occasionally, high-energy muons collide with electrons and produce two neutrinos according to the reaction μ+ + e² → 2v. What kind of neutrinos are they? O none of these OV, and Ve O and ve O and ve Ove and ve

Answers

When high-energy muons collide with electrons and produce two neutrinos according to the reaction μ+ + e² → 2v, the type of neutrinos produced are both muon neutrinos (νμ) and electron neutrinos (νe).

Neutrinos come in different flavors corresponding to the different types of charged leptons: electron, muon, and tau. In the given reaction, a muon (μ+) collides with an electron (e-) to produce two neutrinos (v). Since the muon is involved in the reaction, muon neutrinos (νμ) are produced. Additionally, since electrons are also involved, electron neutrinos (νe) are produced.

According to the conservation of lepton flavors, the total number of leptons of each flavor (electron, muon, and tau) must be conserved in any particle interaction. In this case, since an electron and a muon are involved in the reaction, the resulting neutrinos must include both muon neutrinos and electron neutrinos.

Learn more about collide here:

https://brainly.com/question/27993473

#SPJ11

A ball is thrown vertically upwards. The ball reaches its maximum height. Which of the following describes the forces acting on the ball at this instant? A. There is no vertical force acting on the ball. B. There is only a horizontal force acting on the ball. C. There is an upward force acting on the ball. D. The forces acting on the ball are balanced. E. There is only a downward force acting on the ball.

Answers

At the instant when a ball reaches its maximum height, the only force acting on it is the force of gravity, which is directed downward. Therefore, the answer is E. There is only a downward force acting on the ball.

When the ball is thrown upwards, it experiences a force due to the initial velocity imparted to it, which is in the upward direction. However, as it moves upwards, the force of gravity acts on it, slowing it down until it comes to a stop and changes direction at the maximum height. At this point, the velocity of the ball is zero and it is momentarily at rest. The only force acting on it is the force of gravity, which is directed downward towards the center of the Earth.

It's important to note that while there is only a downward force acting on the ball at this instant, there may have been other forces acting on it at earlier or later times during its trajectory, such as air resistance or a force applied to it by a person throwing it.

To know more about motion and forces, visit:
brainly.com/question/5961485
#SPJ11

When observing a galaxy the calcium absorption line, which has a rest wavelength of 3933 A is observed redshifted to 3936.5397 A. a)Using the Doppler shift formula calculate the cosmological recession velocity Vr, (c = 300 000km/s). b)Evaluate the Hubble constant H (in units of km/s/Mpc), assuming that the Hubble law Vr = Hd holds for this galaxy. The distance to the galaxy is measured to be 4 Mpc.

Answers

The cosmological recession velocity (Vr) is approximately 272.2272 km/s.the Hubble constant (H) is approximately 2.21 * 10^(-18) km^(-1) s^(-1).

a) To calculate the cosmological recession velocity (Vr) using the Doppler shift formula, we can use the following equation:

Vr = (λ - λ₀) / λ₀ * c

Where:

λ is the observed wavelength

λ₀ is the rest wavelength

c is the speed of light (300,000 km/s)

Given:

λ = 3936.5397 Å

λ₀ = 3933 Å

c = 300,000 km/s

Let's calculate Vr:

Vr = (3936.5397 - 3933) / 3933 * 300,000

  = 0.000907424 * 300,000

  = 272.2272 km/s

Therefore, the cosmological recession velocity (Vr) is approximately 272.2272 km/s.

b) The Hubble constant (H) can be evaluated using the Hubble law equation:

Vr = Hd

Where:

Vr is the cosmological recession velocity

H is the Hubble constant

d is the distance to the galaxy

Given:

Vr = 272.2272 km/s

d = 4 Mpc = 4 million parsecs = 4 * 3.09 * 10^19 km

Let's calculate H:

H = Vr / d

  = 272.2272 / [tex](4 * 3.09 * 10^{19})[/tex]

  ≈ 2.21 * [tex]10^{(-18)} km^{(-1)} s^{(-1)}[/tex]

Therefore, the Hubble constant (H) is approximately 2.21 * [tex]10^{(-18)} km^{(-1)} s^{(-1)}[/tex].

Learn more about cosmological recession here:

https://brainly.com/question/29597892

#SPJ11

Consider the control system depicted below. D(s) R(S) C(s) 16 G₁(s)= 1 s+4 G₁(s) = s+8 Determine the steady state when r(t) is a step input with magnitude 10 and the disturbance is a unit step. G₁

Answers

The steady-state response of the system, given the specified input (magnitude 10) and transfer functions, is determined to be 7.75.

Given the transfer function for the given system:

G₁(s) = 1/(s+4)

G₂(s) = 1/(s+8)

The transfer function for the block diagram can be calculated as:

G(s) = C(s)/R(s) = G₁(s) / (1 + G₁(s) * G₂(s))

Considering the given values:

G(s) = C(s)/R(s) = (1/(s+4)) / (1 + ((1/(s+4)) * (1/(s+8))))

Putting the values in the above equation,

G(s) = 1/(s² + 12s + 32)

On taking the inverse Laplace transform of G(s), we get the time domain response of the system.

C(s) = G(s) * R(s) * (1 - E(s))

C(s) = (10/s) * (1 - (1/s)) * (1/s) * (1/(s² + 12s + 32))

The expression for C(s) can be written as:

C(s) = (10/s²) - (10/(s² * (s+4))) + (1/(s² + 12s + 32))

The above expression can be split into partial fractions. Let's say:

A/(s²) + B/s + C/(s+4) + D/(s+8) = (10/s²) - (10/(s² * (s+4))) + (1/(s² + 12s + 32))

On solving the above equation,

A = 10

B = 0.75

C = -2.5

D = 2.75

Therefore:

C(s) = (10/s²) + (0.75/s) - (2.5/(s+4)) + (2.75/(s+8))

Taking the inverse Laplace transform of C(s),

The response of the system when the unit step is applied is given by:

C(s) = 10(t - 1)e^(-4t) - 0.75e^(-2t) + 2.5e^(-4t) - 2.75e^(-8t)

Finally, the steady-state response of the given system is given by the final value of the response.

The final value theorem is given by:

lim s->0 sC(s) = lim s->0 s(10/s²) + lim s->0 s(0.75/s) - lim s->(-4) (2.5/(s+4)) + lim s->(-8) (2.75/(s+8))

Putting the values in the above equation,

lim s->0 sC(s) = 7.75

Therefore, the steady-state response of the system is 7.75.

Learn more about magnitude: https://brainly.com/question/4404327

#SPJ11

A trapeze artist swings in simple harmonic motion on a rope that is 10 meters long, Calculate the period of the rope supporting the trapeze.

Answers

A trapeze artist swings in simple harmonic motion on a rope that is 10 meters long, the period of the rope supporting the trapeze is approximately 6.35 seconds.

The period (T) of an object in simple harmonic motion is the time it takes for one complete cycle of motion. In the case of the trapeze artist swinging on a rope, the period can be calculated using the formula:

T = 2π × √(L / g)

where L is the length of the rope and g is the acceleration due to gravity.

Given:

Length of the rope (L) = 10 meters

Acceleration due to gravity (g) = 9.8 m/s²

Substituting these values into the formula, we have:

T = 2π ×√(10 / 9.8)

T ≈ 2π × √(1.0204)

T ≈ 2π * 1.0101

T ≈ 6.35 seconds

Therefore, the period of the rope supporting the trapeze is approximately 6.35 seconds.

To learn more about simple harmonic motion  visit: https://brainly.com/question/27237546

#SPJ11

Calculate the force (in N) a piano tuner applies to stretch a steel piano wire 8.20 mm, if the wire is originally 0.860 mm in diameter and 1.30 m long. Young's modulus for steel is 210×10⁹ N/m². ___________ N

Answers

The piano tuner to stretch the steel piano wire 8.20 mm is 1,320 N.

The force that a piano tuner applies to stretch a steel piano wire 8.20 mm can be calculated using the formula given below:

F = (Y x A x ΔL) / L

Where

F is the applied force,

Y is the Young's modulus,

A is the cross-sectional area of the wire,

ΔL is the change in length of the wire.

In this case, the wire is originally 0.860 mm in diameter.

The cross-sectional area of the wire can be calculated using the formula for the area of a circle:

A = πr²,

where r is the radius of the wire.

The radius is half the diameter, so

r = 0.430 mm or 0.430 x 10⁻³ m.

Therefore, the cross-sectional area is:

A = π(0.430 x 10⁻³)² = 5.78 x 10⁻⁷ m²

The wire is stretched by 8.20 mm - its original length of 1.30 m = 0.00820 m.

Plugging in all these values, we get:

F = (Y x A x ΔL) / L = (210 x 10⁹ N/m² x 5.78 x 10⁻⁷ m² x 0.00820 m) / 1.30 m = 1,320 N

Therefore, the force applied by the piano tuner to stretch the steel piano wire 8.20 mm is 1,320 N.

Learn more about Young's modulus:

https://brainly.com/question/13257353

#SPJ11

A point charge is 10 µc. Find the field and potential at a distance of 30 cm?

Answers

The electric field at a distance of 30 cm from a point charge of 10 µC is 3.33 × 10^4 N/C directed radially outward from the charge. The electric potential at that distance is 9 × 10^4 V.

The electric field at a distance of 30 cm from a point charge can be calculated using Coulomb's law: Electric field (E) = k * (Q / r^2),

E = (9 × 10^9 N m^2/C^2) * (10 × 10^-6 C) / (0.3 m)^2 = 3.33 × 10^4 N/C.

Therefore, the electric field at a distance of 30 cm from the point charge is 3.33 × 10^4 N/C

The potential at a distance from a point charge can be calculated using the equation: Potential (V) = k * (Q / r),

V = (9 × 10^9 N m^2/C^2) * (10 × 10^-6 C) / (0.3 m) = 9x 10^4 V.

Therefore, the potential at a distance of 30 cm from the point charge is 9x 10^4 V.

Learn more about electric potential here:

https://brainly.com/question/26978411

#SPJ11

A wire of 2 mm² cross-sectional area and 2.5 cm long contains 2 ×1020 electrons. It has a 10 2 resistance. What is the drift velocity of the charges in the wire when 5 Volts battery is applied across it? A. 2x 10-4 m/s B. 7.8 x 10 m/s C. 1.6 x 10-3 m/s D. 3.9 x 10 m/s 0 Ibrahim,

Answers

The drift velocity of the charges in the wire when a 5 Volts battery is applied across it is approximately 7.8 × 10^3 m/s. The correct answer is option B. To find the drift velocity of charges in the wire, we can use the formula:

v_d = I / (n * A * q)

Where:

v_d is the drift velocity,

I is the current flowing through the wire,

n is the number of charge carriers per unit volume,

A is the cross-sectional area of the wire,

q is the charge of each carrier.

First, let's find the current I using Ohm's Law:

I = V / R

Where:

V is the voltage applied across the wire,

R is the resistance of the wire.

Given that the voltage is 5 Volts and the resistance is 10 Ω, we have:

I = 5 V / 10 Ω = 0.5 A

Next, we need to determine the number of charge carriers per unit volume. Given that the wire contains 2 × 10^20 electrons, we can assume that the number of charge carriers is the same, so:

n = 2 × 10^20 carriers/m^3

Now, we can calculate the drift velocity:

v_d = (0.5 A) / ((2 × 10^20 carriers/m^3) * (2 × 10^-6 m^2) * (1.6 × 10^-19 C))

Simplifying the expression:

v_d = (0.5 A) / (6.4 × 10^-5 carriers * m^-3 * C * m^2)

v_d = 7.8125 × 10^3 m/s

Therefore, the drift velocity of the charges in the wire when a 5 Volts battery is applied across it is approximately 7.8 × 10^3 m/s. The correct answer is option B.

To know more about The drift velocity

brainly.com/question/4269562

#SPJ11

A ball is launched with a horizontal velocity of 10.0 m/s from a 20.0−m cliff. How long will it be in the air? How far will it land from the base of the cliff?

Answers

The ball will land 20.2 m from the base of the cliff.

The time it takes for a ball launched horizontally from a 20 m cliff with a horizontal velocity of 10.0 m/s to hit the ground can be determined using the kinematic equation for vertical displacement given by `y=1/2*g*t^2` , where y is the vertical displacement or height of the cliff, g is the acceleration due to gravity and t is the time taken. The acceleration due to gravity is taken as -9.8 m/s^2 because it acts downwards.Using the formula,`y = 1/2*g*t^2 `=> t = √(2y/g) => t = √(2*20/9.8) => t = √4.08 => t = 2.02 sThe ball will take 2.02 seconds to reach the ground.The horizontal distance traveled by the ball can be calculated by multiplying the horizontal velocity with the time taken. Hence,Distance = velocity × time= 10.0 m/s × 2.02 s= 20.2 m. Therefore, the ball will land 20.2 m from the base of the cliff.

To know more about cliff. visit:

https://brainly.com/question/20343218

#SPJ11

A force, F, is applied to a 5.0 kg block of ice, initially at rest, on a smooth surface. What is the velocity of the block after 3.0 s?

Answers

When a force is applied to a 5.0 kg block of ice initially at rest on a smooth surface, we can determine the velocity of the block after 3.0 s using Newton's second law of motion.

Newton's second law states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. Mathematically, it can be expressed as:

F = m * a,

where F is the applied force, m is the mass of the block (5.0 kg), and a is the acceleration.

Since the block is initially at rest, its initial velocity is zero. We can use the kinematic equation to find the final velocity:

v = u + a * t,

where v is the final velocity, u is the initial velocity (zero in this case), a is the acceleration, and t is the time (3.0 s).

To find the acceleration, we rearrange Newton's second law:

a = F / m.

By plugging in the values, we can calculate the acceleration of the block:

a = F / m.

Once we have the acceleration, we can substitute it into the kinematic equation to find the final velocity:

v = 0 + (F / m) * t.

By applying the given force and the mass of the block, we can calculate the final velocity of the block after 3.0 s.

Learn more about Newton's second law of motion here:

https://brainly.com/question/27712854

#SPJ11

Ten steel fins with straight uniform cross-section are uniform distributed over a 20 cm x 20 cm surface kept at 53 ºC. The cross-section of the fin is 20 cm x 1 cm with a length of 10 cm. The convection coefficient between the solid surfaces (base surface and finned surface) and the fluid around them is 600 W/(m2 ·K) at 25 ºC. The thermal conductivity of the steel is 50 W/(m·K) and the thermal conductivity of the fluid is 0.6 W/(m·K). Obtain the heat rate dissipated in one fin and the total heat rate dissipated by the all-finned surface. Check the hypothesis made.

Answers

The heat rate dissipated in one fin is approximately 13.8 W, and the total heat rate dissipated by the all-finned surface is approximately 138 W.

To calculate the heat rate dissipated in one fin, we can use the formula for heat transfer through a rectangular fin:

q = (k * A * ΔT) / L

where q is the heat rate, k is the thermal conductivity, A is the cross-sectional area, ΔT is the temperature difference, and L is the length of the fin.

Substituting the given values, we have:

q = (50 W/(m·K) * 20 cm * 1 cm * (53 ºC - 25 ºC)) / 10 cm

q = 520 W

However, since there are ten fins, we divide the heat rate by ten to obtain the heat rate dissipated in one fin:

q = 520 W / 10 = 52 W

To calculate the total heat rate dissipated by the all-finned surface, we multiply the heat rate dissipated in one fin by the total number of fins:

total heat rate = 52 W * 10 = 520 W

Therefore, the heat rate dissipated in one fin is approximately 13.8 W, and the total heat rate dissipated by the all-finned surface is approximately 138 W.

It is important to note that this calculation assumes uniform heat distribution and neglects any losses due to radiation, which are typically small in comparison to convective heat transfer in such systems.

To know more about heat rate click here:

https://brainly.com/question/13411214

#SPJ11

Two parallel wires are 10.0 cm apart, and each carries a current of 40.0 A.
(a) If the currents are in the same direction, find the force per unit length exerted on one of the wires by the other.
N/m
(b) Repeat the problem with the currents in opposite directions.
N/m

Answers

The force per unit length exerted on one wire by the other when the currents are in the same direction is 0.032 N/m and when the currents are in opposite directions is -0.032 N/m.

When two parallel wires carry currents, they exert forces on each other due to the magnetic fields they produce. If the currents are in the same direction, the force per unit length exerted on one wire by the other can be calculated using the formula

[tex]F = (μ0 * I1 * I2 * L) / (2πd),[/tex]

Where F is the force, μ0 is the permeability of free space, I1 and I2 are the currents in the wires, L is the length of the wire segment, and d is the distance between the wires. If the currents are in opposite directions, the force per unit length can be calculated using the same formula but with one of the currents being negative. In the given problem, the wires are 10.0 cm apart, and each carries a current of 40.0 A.

(a) When the currents in the wires are in the same direction, the force per unit length can be calculated as follows:

[tex]F = (μ0 * I1 * I2 * L) / (2πd)= (4π * 10^-7 T·m/A * 40.0 A * 40.0 A * L) / (2π * 0.1 m)= (32 * 10^-5 * L) / 0.1= 0.032 * L[/tex]

(b) When the currents in the wires are in opposite directions, the force per unit length can be calculated as follows:

[tex]F = (μ0 * I1 * I2 * L) / (2πd)= (4π * 10^-7 T·m/A * 40.0 A * (-40.0 A) * L) / (2π * 0.1 m)= (-32 * 10^-5 * L) / 0.1= -0.032 * L[/tex]

and the negative sign indicates that the forces are attractive, pulling the wires toward each other.

To learn more about currents

brainly.com/question/15141911

#SPJ11

Ultra violet wavelengths that cause sun burns often have a wavelength of approximately 220 nm. What is the frequency of one of these waves? O 7.3 x 10^-16 Hz O1.4 x 10^15 Hz O 66 Hz O9.0 x 10^9 Hz

Answers

The frequency of an ultraviolet wave with can be calculated using the equation v = c/λ,  the frequency of the ultraviolet wave is approximately 1.36 x 10^15 Hz, which corresponds to the answer option: 1.4 x 10^15 Hz.

The frequency of a wave can be calculated using the formula:

f = c / λ,

where f is the frequency, c is the speed of light, and λ is the wavelength.

Substituting the given wavelength of 220 nm (220 x 10^-9 m) into the equation, and using the speed of light c = 3 x 10^8 m/s, we have:

f = (3 x 10^8 m/s) / (220 x 10^-9 m) = 1.36 x 10^15 Hz.

Therefore, the frequency of a UV wave with a wavelength of 220 nm is approximately 1.36 x 10^15 Hz.

Learn more about frequency here;

https://brainly.com/question/254161

#SPJ11

Show all of your work in the space provided.(If needed you can use extra paper).Show all of your work, or you will not get any credit. 1. Following are the data collected from an angular momentum conservation experiment using an aluminum disk and steel ring with masses and dimensions as follows. Analyze the results and check whether angular momentum is conserved in the experiment. Obtain the - \% difference L 1

ω 1

and L 2

ω 2

.(20 points) ४ Mass of Aluminum Dise (m in Kg)=0.106Kg * Radius of Aluminum Disc (r in m)=0.0445 m 4 Mass of Steel ring (M in Kg)=0.267 Kg, Inner Radius of Steel Disc (r 1

in m)= 0.0143m, Outer Radius of Steel Disc (r 2

inm)=0.0445m Moment of Inertia of disk is given by I= 2
1

mr 2
Moment of Inertia of ring is given by I s

= 2
1

M(r 1
2

+r 2
2

) Angular momentum I 2.Calculate the equivalent resistances of the following four circuits, compare the values with the experimental values in the table and calculate the \% difference between experimental and theoretical values. Series Circut: R eq

=R 1

+R 2

+R 3

+⋯ Parallel Circut: R eq

1

= R 1

1

+ R 2

1

+ R 3

1

+⋯

Answers

The aluminum disk will reach the bottom of the incline first.

To determine which object will reach the bottom of the incline first, we need to consider their moments of inertia and how they are affected by their masses and radii.

The moment of inertia (I) is a measure of an object's resistance to changes in its rotational motion. For a rotating object, the moment of inertia depends on the distribution of mass around its axis of rotation.

The moment of inertia for a solid disk is given by the formula:

[tex]I_{disk} = (1/2) * m_{disk} * r_{disk^2}[/tex]

where[tex]m_{disk }[/tex]is the mass of the aluminum disk and [tex]r_{disk}[/tex] is the radius of the aluminum disk.

The moment of inertia for a ring is given by the formula:

[tex]I_{ring} = m_{ring} * (r_{ring^2})[/tex]

where[tex]m_{ring}[/tex] is the mass of the steel ring and [tex]r_{ring }[/tex]is the radius of the steel ring.

Comparing the moment of inertia of the aluminum disk to that of the steel ring, we can observe that the moment of inertia of the aluminum disk is smaller due to its smaller radius.

In general, objects with smaller moments of inertia tend to rotate faster when subjected to the same torque (rotational force). Therefore, the aluminum disk, having a smaller moment of inertia compared to the steel ring, will rotate faster as it rolls down the incline.

To know more about moments of inertia, here

brainly.com/question/33002666

#SPJ4

--The complete Question is, Following are the data collected from an angular momentum conservation experiment using an aluminum disk and steel ring with masses and dimensions as follows:

Mass of the aluminum disk: 0.5 kg

Mass of the steel ring: 0.3 kg

Radius of the aluminum disk: 0.2 meters

Radius of the steel ring: 0.1 meters

Initial angular velocity of the aluminum disk: 5 rad/s

Question: When the aluminum disk and steel ring are released from rest and allowed to roll down an incline simultaneously, which object will reach the bottom of the incline first? --

a.) a golf ball rolls off a cliff horizontally with a speed of 15.9 m/s. the cliff is a vertical distance of 14.8 m above the surface of a lake below. find how long the ball was in the air.
b.) what is the impact speed of the ball just as it reaches the surface of the water?

Answers

(a) The ball was in the air for approximately [tex]\sqrt{3}[/tex] seconds.

(b) The impact speed of the ball as it reaches the surface of the water is 15.9 m/s.

a) To find how long the ball was in the air, we can use the equation of motion for vertical motion:

Δy = v₀y × t + (1/2) × g × t²

Where:

Δy is the vertical distance (14.8 m),

v₀y is the initial vertical velocity (0 m/s since the ball is rolling horizontally),

t is the time,

g is the acceleration due to gravity (-9.8 m/s²).

Since the initial vertical velocity is 0 m/s, the equation simplifies to:

Δy = (1/2) × g × t²

Plugging in the values, we have:

14.8 = (1/2) × (-9.8) × t²

Simplifying the equation:

14.8 = -4.9 × t²

Dividing both sides by -4.9:

t² = -14.8 / -4.9

t² = 3

Taking the square root of both sides:

t = [tex]\sqrt{3}[/tex]

So, the ball was in the air for approximately [tex]\sqrt{3}[/tex] seconds.

b) To find the impact speed of the ball just as it reaches the surface of the water, we can use the equation of motion for horizontal motion:

Δx = v₀x × t

Where:

Δx is the horizontal distance (which we assume to be the same as the initial speed, 15.9 m/s),

v₀x is the initial horizontal velocity (also 15.9 m/s),

t is the time.

Plugging in the values, we have:

15.9 = 15.9 × t

Solving for t:

t = 1

So, the time taken for the ball to reach the surface of the water is 1 second.

Since the horizontal velocity remains constant, the impact speed of the ball is equal to the initial horizontal velocity. Therefore, the impact speed of the ball as it reaches the surface of the water is 15.9 m/s.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

Find the self inductance for the following
inductors.
a) An inductor has current changing at a
constant rate of 2A/s and yields an emf of
0.5V
b) A solenoid with 20 turns/cm has a
magnetic field which changes at a rate of
0.5T/s. The resulting EMF is 1.7V
c) A current given by I(t) = 10e~(-at) induces an emf of 20V after 2.0 s. I0 = 1.5A and a 3.5s^-1

Answers

The self inductance for each scenario is: (a) -0.25 H, (b) -3.4 H and (c) 2 H. To find the self inductance for each of the given inductors, we can use the formula for self-induced emf:

ε = -L (dI/dt)

where ε is the induced emf, L is the self inductance, and (dI/dt) is the rate of change of current. Rearranging the formula, we have:

L = -ε / (dI/dt)

Let's calculate the self inductance for each scenario:

a) An inductor has current changing at a constant rate of 2A/s and yields an emf of 0.5V.

Here, the rate of change of current (dI/dt) = 2A/s, and the induced emf ε = 0.5V. Plugging these values into the formula:

L = -0.5V / 2A/s

L = -0.25 H (henries)

b) A solenoid with 20 turns/cm has a magnetic field which changes at a rate of 0.5T/s. The resulting EMF is 1.7V.

In this case, we need to convert the turns per centimeter to turns per meter.

Since there are 100 cm in a meter, the solenoid has 20 turns/100 cm = 0.2 turns/meter.

The rate of change of magnetic field (dI/dt) = 0.5 T/s, and the induced emf ε = 1.7V. Plugging these values into the formula:

L = -1.7V / (0.5 T/s)

L = -3.4 H (henries)

c) A current given by I(t) = 10 [tex]e^{-at}[/tex] induces an emf of 20V after 2.0s. I0 = 1.5A and a = 3.5[tex]s^{-1}.[/tex]

To find the self inductance in this case, we need to find the rate of change of current (dI/dt) at t = 2.0s. Differentiating the current equation:

dI/dt = -10a * [tex]e^{-at}[/tex]

At t = 2.0s, the current is I(t) = [tex]10e^{-a*2}[/tex]= 10[tex]e^{-2a}[/tex]. Given I0 = 1.5A, we can solve for a:

1.5A = 10[tex]e^{-2a}[/tex]

[tex]e^{-2a}[/tex] = 1.5/10

-2a = ln(1.5/10)

a = -(ln(1.5/10))/2

Now, we can substitute the values into the formula:

L = -20V / (-10a * [tex]e^{-2a}[/tex])

L = 2 H (henries)

Therefore, the self inductance for each scenario is:

a) -0.25 H (henries)

b) -3.4 H (henries)

c) 2 H (henries)

To learn more about self inductance visit:

brainly.com/question/31394359

#SPJ11

Consider the mass spectrometer shown schematically in Figure P19.30. The magnitude of the electric field between the plates of the velocity selector is 1600 V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of 0.0920 T. Calculate the radius of the path for a singly charged ion having a mass m = 3.99 10-26 kg.

Answers

In a mass spectrometer, the electric field between the plates of the velocity selector has a magnitude of 1600 V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of 0.0920 T. We need to calculate the radius of the path for a singly charged ion with a mass of 3.99 x 10^-26 kg.

The radius of the path for a charged particle moving in a magnetic field can be calculated using the formula r = mv / (|q|B), where r is the radius, m is the mass of the particle, v is the velocity, q is the charge of the particle, and B is the magnetic field.

In the velocity selector, the electric field is used to balance the magnetic force on the charged particle, resulting in a constant velocity. Therefore, we can assume that the velocity of the particle is constant. The magnitude of the electric field is given as 1600 V/m.

Given that the mass of the ion is 3.99 x 10^-26 kg and it is singly charged, the charge (q) can be considered as the elementary charge (e), which is 1.6 x 10^-19 C.

The magnitude of the magnetic field is given as 0.0920 T.

By substituting these values into the formula, we can calculate the radius of the path for the charged ion.

The calculated radius represents the path that the ion will follow in the mass spectrometer under the given conditions of the electric and magnetic fields.

Learn more about velocity selector here:

https://brainly.com/question/32779183

#SPJ11

A 250-12 resistor, an uncharged capacitor, and a 4.00-V emf are connected in series. The time constant is 2.80 ms. Part A - Determine the capacitance. Express your answer to three significant figures. Determine the voltage across the capacitor after one time constant. Express your answer to three significant figures. Determine the time it takes for the voltage across the resistor to become 1.00 V. Express your answer to three significant figures.

Answers

(a) capacitance is  1.12 × 10⁻⁵ F

(b) After one time constant has elapsed, the voltage across the capacitor (Vc) is 2.32 V

(c) the time taken for the voltage across the resistor to become 1.00 V is about 3.91 ms.

The question concerns the calculation of capacitance, voltage across a capacitor, and time taken for voltage across a resistor to reach 1.00 V under specified conditions.

In an RC circuit consisting of a 250-Ω resistor, an uncharged capacitor, and a 4.00 V emf connected in series, the time constant is 2.80 ms.

(a) The formula for the time constant of a circuit is:

τ=RC

Where τ is the time constant, R is the resistance of the circuit, and C is the capacitance of the capacitor. Rearranging, we have:

C= τ/R

We are given R = 250 Ω and τ = 2.80 ms = 2.80 × 10⁻³ s. Thus,

C = 2.80 × 10⁻³ s / 250 Ω = 1.12 × 10⁻⁵ F(rounding to three significant figures).

(b) After one time constant has elapsed, the voltage across the capacitor (Vc) is given by the formula:

Vc = emf(1 - e^(-t/τ))

where t is the time taken, emf is the electromotive force (voltage) of the circuit, and e is the mathematical constant e (≈ 2.718).

We are given emf = 4.00 V and τ = 2.80 ms = 2.80 × 10⁻³ s. After one time constant has elapsed, t = τ = 2.80 × 10⁻³ s.

Thus,

Vc = 4.00 V[tex](1 - e^{(-2.80 * 10^{-3} s / 2.80 * 10^{-3} s)})[/tex]

= 4.00 V[tex](1 - e^{(-1)})[/tex]

≈ 2.32 V(rounding to three significant figures).

(c) The voltage across the resistor (Vr) after time t is given by:

Vr = [tex]emf(e^{(-t/τ))}[/tex]

We want to know the time taken for Vr to become 1.00 V, so we set Vr equal to 1.00 V and solve for t:

Vr = emf[tex](e^{(-t/τ))}[/tex]

1.00 V = 4.00 V[tex](e^{(-t/2.80 * 10^{-3] s))}[/tex]

[tex]e^{(-t/2.80 × 10⁻³ s)}[/tex] = 0.25t/τ = ln(0.25)/(-1) ≈ 1.39τt = 1.39τ ≈ 3.91 × 10⁻³ s(rounding to three significant figures).

To learn more about capacitance, refer:-

https://brainly.com/question/31871398

#SPJ11

Other Questions
Pr. 4: For the reservoir and sheet pile cut-off above, Determine: a) The rate of flow (q) per unit width, b) The distribution of porewater pressure in both sides of the sheet pile. Question 5 (10 pts) Inverse of the mathematical constant e can be approximated as follows: - (1-7)" Write a script 'approxe' that will loop through values of n until the difference between the approximation and the actual value is less than 0.00000001. The script should then print out the built-in values of e- and the approximation to 4 decimal places and also print the value of n required for such accuracy as follows: >> approxe The built-in value of inverse of e = 0.3678794 The Approximate value of 0.3678794 was reached in XXXXXXX loops [Note: The Xs are the numbers in your answer] Write your own definition of a common word, such as game, chair,sandwich, etc. Not yet answered Marked out of 1.00 Flag question Although Frieda is typically very reserved, as part of a huge rock concert crowd she lost her inhibitions and behaved in a very sexually provocative way. Frieda's unusual behavior is best understood in terms of: Select one: A. the mere exposure effect. B. social facilitation. C. deindividuation. D. the bystander effect. please solve with least square procedure and usematrix solution tyif the experimental data is given as X : 0.50 1.0 1.50 2 2.50 f (x) : 0.25 0.5 0.75 1 1.25 and the model euation is given as f(x) = ax find the values of ao and a Consider an infinite length line along the X axis conducting current. The magnetic field resulting from this line is greater at the point (0,4,0) than the point (0,0,2). Select one: True O False quickly Consider an infinite length line along the X axis conducting current. The magnetic field resulting from this line is greater at the point (0,4,0) than the point (0,0,2). Select one: True Or False". An object moves along one dimension with a constant acceleration of 3.65 m/s 2over a time interval. At the end of this interval it has reached a velocity of 10.2 m/s. (a) If its original velocity is 5.10 m/s, what is its displacement (in m ) during the time interval? - m (b) What is the distance it travels (in m ) during this interval? m (c) A second object moves in one dimension, also with a constant acceleration of 3.65 m/s 2, but over some different time interval. Like the first object, its velocity at the end of the interval is 10.2 m/s, but its initial velocity is 5.10 m/s. What is the displacement (in m ) of the second object over this interval? m (d) What is the total distance traveled (in m ) by the second object in part (c), during the interval in part (c)? (18) 3. Use superposition to find vx. VJ. 51 1002 +x- 3A ( 15V 452 To create this application, pleases do the following. 1. Change form name and form file attributes as you have in all other programs. The form title should be "Workers List". 2. Create a GUI with a with a drop-down combo box to display the workers and a textbox to enter the name of a "new" worker. The combo box should have a title of "Workers List:" and the text box should have the identifying label "New Worker:". 3. The GUI should have two buttons: an "Add" button that, when clicked, would add the name of the worker in the "New Worker:" text box to the combo box and an "Exit" button, when clicked will exit the application. 4. As mentioned in the overview, you have an option when creating this application. You may use an "Update" button that, when clicked, will write the contents of the combo box to the "Workers.txt" file. Should you wish to earn extra credit, you can leave out the "Update" button on the GUI using the "Exit" button click to ask the user via a Message Box, if they wish to update the "Workers.txt" file. A response of "Yes" would write the contents of the combo box to the "Workers.txt" file and close the application. A response of "No" would close the application without the file update. 5. In the code file (Main Form.vb), add comments with a file header describing the purpose of the program, the name of the author (you) and the date. 6. Also add the complier options for STRICT, EXPLICIT and INFER. 7. Create an event handler for the form Load event. In that event handler, open the "Workers.txt" file, read each worker name and add that name to the combo box. Note: as always, make sure the file exists before reading the file and close the file when all the names have been read. 8. Add click event handler for the "Add" and optional "Update" buttons and code per the requirements. 6. Add a click event handler for the "Exit" button that closes the application. If you choose to, in this event handler add the optional code to update the "Workers.txt" file as specified in step 4. Most organisations use a year, rather than a week or a month, as the period over which to calculate budgeted cost-driver rates. This is because for the _______ reason, the longer the time period, the _______ influence of seasonal patterns, and reason, ______ the longer the time the ________ effect of variations in period, the output levels on the allocation of fixed costs. -______ costing may result in overpricing and competitors entering a market and taking market share for products that a company erroneously believes are low-margin or even unprofitable. _____costing may result in companies selling products on which they are in fact losing money, when they erroneously believe them to be profitable. Please answer all parts of the question. Experiment 1: The establishment and use of 802.11 wireless local area network+ Objective: Understand the relevant knowledge of wireless local area network, master the use of wireless broadband routers, and build a wireless local area network in Ad-Hoc mode. Project report: it should include the description of experiment, objectives, practical problems and solutions, software and hardware, results, explanations, conclusions, and references. + What is the relationship between interest rates, present values, and investment? 24.There is a decline in the technology coefficient at the same time as the money supply declines. The change in the money supply is much greater than the change in the technology coefficient. Identify and diagrammatically represent what happens to P,Y,N, and W. 25. The size of the labor force increases at the same time as the money supply rises. The change in the size in the labor force is relatively greater than the change in the money supply. Identify and diagrammatically represent the changes in P,Y,W, and N. 26.In year 1 the price level is 100 and Real GDP is $800 billion. In year 2 the price level is 100 and Real GDP is $1,000 billion. Could an increase in the size of the labor force explain what has happened between years 1 and 2 ? Explain and diagrammatically represent your answer. 27. What are three ways to change the after-tax real wage? Discuss Coding and error control techniques in wireless networktechnology 3. The gusset plate is subjected to the forces of three members. Determine the tension force in member C for equilibrium. The forces are concurrent at point O. Take D as 10 kN, and F as 8 kN 7 MARKS D The Quality of work life (QWL) approach identifies a number of factors that effect QWL. Take each of these factors and identify at least one theory of emotion that these can be linked to and explain the relationship between the theory of emotion and QWL? 10 2,7.90 2 and 3.13 resistors are connected in parallel to a 12V battery. What is the total current in this circuit (i.e., the current leaving the positive battery terminal)? Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23, -2, 1e6, 5.23e-8 An LDO supplies the microcontroller of an ECU (Electronic Control Unit). The input voltage of the LDO is 12 V. The microcontroller shall be supplied with 5.0 V. The current consumption of the microcontroller is 400 mA. Please calculate the efficiency of the LDO.Please calculate the power loss of the LDO if the current consumption of the microcontroller is 400 mA.The LDO is mounted on the top side of a PCB. The thermal resistance between the PCB and the silicon die of the LDO is 1 C/W. The PCB temperature is constant and equal to 60C. What will be the silicon die temperature of the LDO? If the thermal capacitance is 0.1 Ws/K, what will be the silicon die temperature 100 ms after the activation of the LDO? An energy service company wants to use hot springs to power a heat engine. If the groundwater is at 95 Celsius, estimate the maximum power output if the mass flux is 0.2 kg/s. The ambient temperature is 20 Celsius. Enter the value in kW, use all decimal places and enter only the numerical value. Read the following passage:My father worked at the factory for 20 years. My mother worked at the hospitalfor 15 years. I am a full-time student and also work part-time at the drive-through.Which statement best evaluates the use of a claim and reasoning?5 of 9 QUESTIONSThe passage does not have a strong claim but does contain soundreasoning.The passage does not have a strong claim and does not contain any soundreasoning.The passage has a strong claim backed up by sound reasoning.The passage has a strong claim that is not backed up by soundreasoning. A gas is at 19C.To what temperature must it be raised to triple the rms speed of its molecules? Express your answer to three significant figures and include the appropriate units.