The width of the slit can be calculated by using the formula for single-slit diffraction. In this case, the width of the central maximum is given as 2.25 cm, and the wavelength of the light is 740.0 nm. The width of the slit is 0.7400 * 10^-3 mm.
By substituting these values into the formula, the width of the slit can be determined.
The single-slit diffraction pattern can be characterized by the equation:
sin(θ) = m * λ / w
where θ is the angle of diffraction, m is the order of the maximum (for the central maximum, m = 0), λ is the wavelength of the light, and w is the width of the slit.
In this case, the width of the central maximum is given as 2.25 cm. To convert this to meters, we divide by 100: 2.25 cm = 0.0225 m. The wavelength of the light is given as 740.0 nm, which is already in meters.
For the central maximum (m = 0), the angle of diffraction is zero. Therefore, sin(θ) = 0, and the equation becomes:
0 = 0 * λ / w
Simplifying the equation, we find that the width of the slit is equal to the wavelength:
w = λ
Substituting the given wavelength, we have:
w = 740.0 nm = 0.7400 μm = 0.7400 * 10^-3 mm
Therefore, the width of the slit is 0.7400 * 10^-3 mm.
Learn more about single-slit diffraction pattern:
https://brainly.com/question/32079937
#SPJ11
Ud = Dust particles, subject to a drag force from the gas, have radial velocity Vg – r12knSt St? +1 where St is the Stokes number. Show that for particles with St > 500Min/(4c), there exist two locations where the dust velocity is zero. Will particles collect in both locations?
Answer:
For particles with St > 500Min/(4c), there exists one location where the dust velocity is zero when St is large. There is no additional location where the dust velocity is zero, even for very large values of St.
The equation provided is:
Ud = Vg – r^(12knSt) + 1
To find the locations where the dust velocity is zero, we can set
Ud = 0 and solve for r:
0 = Vg – r^(12knSt) + 1
This equation represents a drag force acting on the dust particles, where Vg is the gas velocity and St is the Stokes number. We want to determine under what conditions there exist two locations where the dust velocity is zero.
For particles with St > 500Min/(4c), where Min is the minimum particle size and c is the speed of sound, we can consider the following:
If St is large (St ≫ 1):
In this case, the term r^(12knSt) dominates the equation compared to the other terms.
Thus, the equation simplifies to:
r^(12knSt) ≈ Vg
Taking the twelfth root of both sides:
r ≈ (Vg)^(1/(12knSt))
This indicates that there is one location where the dust velocity is zero.
If St is very large (St ≫ 500Min/(4c)):
In this scenario, the term r^(12knSt) becomes negligible compared to the other terms. Thus, the equation can be approximated as:
Vg + 1 ≈ 0
However, this equation has no solution since there is no real value of r that satisfies it. Therefore, there is no additional location where the dust velocity is zero.
To summarize, for particles with St > 500Min/(4c), there exists one location where the dust velocity is zero when St is large.
However, there is no additional location where the dust velocity is zero, even for very large values of St.
Learn more about stokes law, here
https://brainly.com/question/29565708
#SPJ11
A playground carousel has a radius of 2.7 m and a rotational inertia of 148 kg m². It initially rotates at 0.94 rad/s when a 24-kg child crawls from the center to the edge. When the boy reaches the edge, the angular velocity of the carousel is: From his answer to 2 decimal places.
Answer: The angular velocity when the child reaches the edge of the carousel is 0.32 rad/s.
Radius r = 2.7 m
Rotational inertia I = 148 kg m²
Angular velocity ω1 = 0.94 rad/s
Mass of the child m = 24 kg
The angular momentum is: L = I ω
Where,L = angular momentum, I = moment of inertia, ω = angular velocity.
Initially, the angular momentum is:L1 = I1 ω1
When the child moves to the edge of the carousel, the moment of inertia changes.
I2 = I1 + m r² where, m = mass of the child, r = radius of the carousel. At the edge, the new angular velocity is,
ω2 = L1/I2 Substituting the values in the above formulas:
L1 = 148 kg m² x 0.94 rad/s
L1 = 139.12 kg m²/s
I2 = 148 kg m² + 24 kg x (2.7 m)²
I2 = 437.52 kg m²
ω2 = 139.12 kg m²/s ÷ 437.52 kg m²
ω2 = 0.3174 rad/s.
The angular velocity of the carousel when the child reaches the edge is 0.32 rad/s.
Therefore, the angular velocity when the child reaches the edge of the carousel is 0.32 rad/s.
Learn more about moment of inertia: https://brainly.com/question/14460640
#SPJ11
Part C
Now, to get numerical equations for x and y, you’ll need to know the initial values (at time t = 0) for some velocities and accelerations. On the Table below the video:
Select cm as the mass measurement set to display.
Click the Table label and check all x and y displacement and velocity data: x, y, vx, and vy. Then click Close.
Now rewrite the displacement equations from Part A and Part B above by substituting in the x and y velocity values from time t = 0 and also using the theoretical value of acceleration of gravity. Write them out below.
To rewrite the displacement equations from Part A and Part B, we'll substitute in the x and y velocity values from time t = 0 and use the theoretical value of acceleration due to gravity.
Displacement equations for x-axis (horizontal motion):
1. x = (vx)t
where vx is the initial velocity in the x-direction.
Displacement equation for y-axis (vertical motion):
1. y = (vy)t + (1/2)(g)(t^2)
where vy is the initial velocity in the y-direction and g is the acceleration due to gravity.
1. Start by selecting cm as the mass measurement set to display.
2. Click on the Table label and check all x and y displacement and velocity data: x, y, vx, and vy.
3. Click Close to save the changes.
4. Now, let's rewrite the displacement equations using the given values.
- For the x-axis displacement, substitute the initial x-velocity value (vx) at time t = 0 into the equation: x = (vx)t.
- For the y-axis displacement, substitute the initial y-velocity value (vy) at time t = 0 and the acceleration due to gravity (g) into the equation: y = (vy)t + (1/2)[tex](g)(t^2[/tex]).
Please note that the specific values for vx, vy, and g should be provided in the question or the given table. Make sure to substitute the correct values to obtain the numerical equations for x and y displacement.
For more such questions on velocity, click on:
https://brainly.com/question/29396365
#SPJ8
Assume the box below has height = width and that the force is applied at the top of the box. Assuming the box does not slide, what minimum force F is needed to make the box rotate? A) The box will rotate for any non-zero force B) F=mg/2 C) F=mg D) F=2mg E) The box will not rotate no matter how large the force In class: Assume the box below has height = width and that the force is applied at the top of the box. If μ S
=0.75, what happens first as the force is gradually increased from F=0 to larger values? A) It slides first B) It rotates first C) It rotates and slides at the same moment D) It never rotates or slides, no matter how large the force In class: Assume the box below has height = width and that the force is applied at the top of the box. If μ S
=0.25, what happens first as the force is gradually increased from F=0 to larger values? A) It slides first B) It rotates first C) It rotates and slides at the same moment D) It never rotates or slides, no matter how large the force Practice : (a) Will the box slide across the floor? (b) Will the box rotate about the lower left corner?
The correct options are (a) the box will slide across the floor, and (b) the box will rotate about the lower left corner.
(a) The box will slide across the floor and (b) the box will rotate about the lower left corner. When the box is pushed at the top with force F, then the force will have two effects. First, the force will rotate the box, and second, the force will make the box slide. The box will rotate when the force F is applied and will slide when the force is large enough, that is, greater than the force of static friction.
The minimum force F needed to make the box rotate is F = mg/2.
Therefore, the correct option is (B) F=mg/2. The box will slide first when μs = 0.75 as it is greater than the force of static friction, which is holding the box in place.
The box will rotate and slide at the same moment when the force is large enough, which is equal to the force of static friction multiplied by the coefficient of static friction.
Therefore, the correct option is (C) It rotates and slides at the same moment.
The box will not slide as the force required to make it slide is greater than the force of static friction, which is holding the box in place. The box will rotate about the lower left corner when the force F is applied to the top of the box.
Therefore, the correct options are (a) the box will slide across the floor, and (b) the box will rotate about the lower left corner.
To know more about static friction
https://brainly.com/question/13680415
#SPJ11
A 79 kg man is pushing a 31 kg shopping trolley. The man and the shopping trolley move forward together with a maximum forward force of 225 N. Assuming friction is zero, what is the magnitude of the force (in N) of the man on the shopping trolley?
Hint: It may be easier to work out the acceleration first.
Hint: Enter only the numerical part of your answer to the nearest integer.
The magnitude of the force (in N) of the man on the shopping trolley is 64 N.
The magnitude of the force (in N) of the man on the shopping trolley is 172 N.Let's calculate the acceleration of the man and the shopping trolley using the formula below:F = maWhere F is the force, m is the mass, and a is the acceleration.The total mass is equal to the sum of the man's mass and the shopping trolley's mass. So, the total mass is 79 kg + 31 kg = 110 kg.The maximum forward force is given as 225 N. Therefore,225 N = 110 kg x aSolving for a gives,a = 2.0455 m/s².
Now, let's calculate the force (in N) of the man on the shopping trolley. Using Newton's second law of motion,F = maWhere F is the force, m is the mass, and a is the acceleration.Substituting the values we have, we get:F = 31 kg x 2.0455 m/s²F = 63.5 NTherefore, the magnitude of the force (in N) of the man on the shopping trolley is:F + 79 kg x 2.0455 m/s² = F + 161.44 N (By Newton's Second Law)F = 225 N - 161.44 NF = 63.56 N ≈ 64 N.Rounding it off to the nearest integer, the magnitude of the force (in N) of the man on the shopping trolley is 64 N.
Learn more about magnitude here,
https://brainly.com/question/30337362
#SPJ11
Workmen are trying to free an SUV stuck in the mud. To extricate the vehicle, they use three horizontal ropes, producing the force vectors shown in the figure. (Figure 1) Take F 1
=853 N,F 2
=776 N, and F 3
= 386 N. Figure 1 of 1 Find the x components of each of the three pulls. Express your answers in newtons to three significant figures separated by commas. Part B Find the y components of each of the three puils. Express your answers in newtons to three significant figures separated by commas. Use the components to find the magnitude of the resultant of the three pulls. Express your answer in newtons to three significant figures. Part D Use the components to find the direction of the resultant of the three pulls. Express your answer as the angle counted from +x axis in the counterclockwise direction.
Part A: The x components of the three pulls are 698 N, 594 N, and 193 N.
Part B: The y components of the three pulls are 489 N, 502 N, and 334 N.
Part C: The magnitude of the resultant of the three pulls is 1427 N.
Part D: the direction of the resultant of the three pulls is 44.5 degrees counted from the +x axis in the counterclockwise direction.
Part A:
To find the x components of each of the three pulls:
F1x= F1cos(35)
F1x = 853 cos(35)N = 698 N
F2x = F2cos(40)
F2x = 776 cos(40)N = 594 N
F3x = F3cos(60)
F3x = 386 cos(60)N = 193 N
Thus, the x components of the three pulls are 698 N, 594 N, and 193 N.
Part B:
To find the y components of each of the three pulls:
F1y= F1sin(35)
F1y = 853 sin(35)N = 489 N
F2y = F2sin(40)
F2y = 776 sin(40)N = 502 N
F3y = F3sin(60)
F3y = 386 sin(60)N = 334 N
Thus, the y components of the three pulls are 489 N, 502 N, and 334 N.
Part C: To find the magnitude of the resultant of the three pulls:
R = √(Rx^2 + Ry^2)
R = √[(698 N + 594 N + 193 N)^2 + (489 N + 502 N + 334 N)^2]
R = 1427 N
Thus, the magnitude of the resultant of the three pulls is 1427 N.
Part D: To find the direction of the resultant of the three pulls:
θ = tan^-1(Ry/Rx)θ = tan^-1[(489 N + 502 N + 334 N)/(698 N + 594 N + 193 N)]
θ = 44.5 degrees
Thus, the direction of the resultant of the three pulls is 44.5 degrees counted from the +x axis in the counterclockwise direction.
To learn about magnitude here:
https://brainly.com/question/30337362
#SPJ11
5 kg of water at 68°C is put into a refrigerator with a compressor with power of 100 W. The water is frozen to ice at 0°C in 64.34 mins. Calculate the COP of the refrigerator. a) 11.0 12. e) 23.0 b) 35.0 c) 20.0 d) 32.0 g) 29.0 h) 14.0 | i) 17.0 f) 8.0 j) 26.0
The closest option from the given choices is (f) 8.0. To calculate the coefficient of performance (COP) of the refrigerator, we need to use the formula:
COP = (Useful cooling effect)/(Work input)
First, let's calculate the useful cooling effect. The water is initially at 68°C and is cooled down to 0°C. The specific heat capacity of water is approximately 4.186 J/g°C.
Useful cooling effect = mass of water × specific heat capacity of water × change in temperature
= 5000 g × 4.186 J/g°C × (68°C - 0°C)
= 1,129,240 J
Next, let's calculate the work input. The power of the compressor is given as 100 W, and the time taken for the water to freeze is 64.34 minutes. We need to convert the time to seconds.
Work input = power × time
= 100 W × (64.34 mins × 60 s/min)
= 38,604 J
Now we can calculate the COP:
COP = Useful cooling effect / Work input
= 1,129,240 J / 38,604 J
≈ 29.2
The closest option from the given choices is (f) 8.0.
Learn more about work here:
https://brainly.com/question/30073908?
#SPJ11
Which of the following is correct in AC circuits? For a given peak voltage, the peak current is inversely proportional to capacitance, inversely proportional to inductance, and directly proportional to resistance. For a given peak voltage, the peak current is directly proportional to resistance, directly proportional to capacitance, and inversely proportional to inductance. For a given peak voltage, the peak current is inversely proportional to resistance, inversely proportional to capacitance, and inversely proportional to inductance. For a given peak voltage, the peak current is directly proportional to capacitance, inversely proportional to inductance, and inversely proportional to resistance.
For a given peak voltage, the peak current in an AC circuit is directly proportional to resistance, inversely proportional to capacitance, and inversely proportional to inductance.
In an AC circuit, the relationship between peak voltage (Vp), peak current (Ip), resistance (R), capacitance (C), and inductance (L) can be described using Ohm's Law and the formulas for capacitive reactance (Xc) and inductive reactance (Xl).
Ohm's Law states that Vp = Ip * R, where Vp is the peak voltage and R is the resistance. According to Ohm's Law, the peak current is directly proportional to resistance. Therefore, for a given peak voltage, the peak current is directly proportional to resistance.
In a capacitive circuit, the capacitive reactance (Xc) is given by Xc = 1 / (2πfC), where f is the frequency of the AC signal and C is the capacitance. The higher the capacitance, the lower the capacitive reactance. Therefore, for a given peak voltage, the peak current is inversely proportional to capacitance.
In an inductive circuit, the inductive reactance (Xl) is given by Xl = 2πfL, where L is the inductance. The higher the inductance, the higher the inductive reactance. Therefore, for a given peak voltage, the peak current is inversely proportional to inductance.
Thus, the correct statement is: For a given peak voltage, the peak current is directly proportional to resistance, inversely proportional to capacitance, and inversely proportional to inductance.
Learn more about Ohm's Law here:
https://brainly.com/question/1247379
#SPJ11
What did Enrico Fermi ask? Where are they? How does hydrogen fuse to helium? How can a black hole form from a star? Question 39 What is the purpose of a telescope objective? To spectrally disperse light into constituent wavelengths. To gather together light rays from distant sources and concentrate them to a focus. To serve as a magnifying lens to view tiny cosmic objects. Question 40 Right ascension and declination are coordinates that mark the positions of places on the Earth. places on the celestial sphere. places on the sky with respect to an observer's local horizon
Enrico Fermi, an Italian physicist, is renowned for his work in radioactivity and nuclear physics. Fermi played a key role in the Manhattan Project, which resulted in the creation of the first nuclear weapon.
Fermi used his expertise in nuclear physics to ask two significant questions: "Where are they?" and "How does hydrogen fuse to helium?"The first question, "Where are they?" referred to extraterrestrial beings. Fermi speculated that given the vastness of the universe, it's highly probable that other forms of life exist. However, Fermi noted that despite the high probability of extraterrestrial life, humans have not yet had any interactions with extraterrestrial life.
Fermi's paradox, also known as the Fermi-Hart paradox, is the conflict between the high probability of extraterrestrial life and the lack of contact.The second question, "How does hydrogen fuse to helium?" is about nuclear fusion. Hydrogen atoms join together to create helium, a process known as nuclear fusion.
This process powers the sun and other stars, allowing them to emit light and heat. However, nuclear fusion also requires an immense amount of heat and pressure to occur. Scientists are attempting to harness nuclear fusion to create a new form of energy.
The purpose of a telescope objective is to gather light rays from distant sources and concentrate them to a focus. The objective is the most crucial component of a telescope, as it determines how much light the telescope can gather. The larger the objective, the more light the telescope can collect. Right ascension and declination are coordinates that mark the positions of places on the celestial sphere. These coordinates are used to locate celestial objects, such as stars and galaxies.
To know more about nuclear physics :
brainly.com/question/29134126
#SPJ11
An inductor in the form of a solenoid contains 400 turns and is 15.4 cm in length. A uniform rate of decrease of current through the inductor of 0.421 A/s induces an emf of 175 PV. What is the radius of the solenoid? mm
Given: Number of turns (N) = 400, Length of solenoid (l) = 15.4 cm = 0.154 m, Rate of change of current (dI/dt) = 0.421 A/s, Induced emf (emf) = 175 PV = 175 * 10^(-12) V.
Using the formula L = (μ₀ * N² * A) / l . We can solve for the radius (R) using the formula for the cross-sectional area (A) of a solenoid:
R = √(A / π) the radius of the solenoid is approximately 0.318 mm.
To find the radius of the solenoid, we can use the formula for the self-induced emf in an inductor:
emf = -L * (dI/dt)
Where: emf is the induced electromotive force (in volts),
L is the self-inductance of the solenoid (in henries),
dI/dt is the rate of change of current through the inductor (in amperes per second).
We are given:
emf = 175 PV (pico-volts) = 175 * 10⁻¹² V,
dI/dt = 0.421 A/s,
Number of turns, N = 400,
Length of solenoid, l = 15.4 cm = 0.154 m.
Now, let's calculate the self-inductance L:
emf = -L * (dI/dt)
175 * 10⁻¹² V = -L * 0.421 A/s
L = (175 * 10⁻¹² V) / (0.421 A/s)
L = 4.15 * 10⁻¹⁰ H
The self-inductance of the solenoid is 4.15 * 10⁻¹⁰ H.
The self-inductance of a solenoid is given by the formula:
L = (μ₀ * N² * A) / l
Where:
μ₀ is the permeability of free space (μ₀ = 4π * 10⁻⁷ T·m/A),
N is the number of turns,
A is the cross-sectional area of the solenoid (in square meters),
l is the length of the solenoid (in meters).
We need to solve this equation for the radius, R, of the solenoid.
Let's rearrange the formula for self-inductance to solve for A:
L = (μ₀ * N² * A) / l
A = (L * l) / (μ₀ * N²)
Now, let's substitute the given values and calculate the cross-sectional area, A:
A = (4.15 * 10⁻¹⁰ H * 0.154 m) / (4π * 10⁻⁷ T·m/A * (400)^2)
A ≈ 4.01 * 10⁻⁸ m²
The cross-sectional area of the solenoid is approximately 4.01 * 10⁻⁸ m².
The cross-sectional area of a solenoid is given by the formula:
A = π * R²
We can solve this equation for the radius, R, of the solenoid:
R = √(A / π)
Let's calculate the radius using the previously calculated cross-sectional area, A:
R = √(4.01 * 10⁻⁸ m² / π)
R ≈ 3.18 * 10⁻⁴ m
To convert the radius to millimeters, multiply by 1000:
Radius = 3.18 * 10⁻⁴ m * 1000
Radius ≈ 0.318 mm
The radius of the solenoid is approximately 0.318 mm.
Learn more about solenoid here
https://brainly.com/question/15504705
#SPJ11
Reverberation time is the time taken by reflected sound to decay by 60 dB from the original sound level. Discuss why direct sound could not be heard in a live room.
Reasons why direct sound could not be heard in a live room are Reverberation, Reflections, and Distortion.
Reverberation time is the time taken by reflected sound to decay by 60 dB from the original sound level. Direct sound could not be heard in a live room due to the following reasons:
Reasons why direct sound could not be heard in a live room are as follows:
1. Reverberation: The direct sound is quickly absorbed by the listener or reflected off the walls in an uncontrolled fashion in a small, untreated room. The time difference between the direct sound and the first reverberation makes it difficult to hear the direct sound. Reverberation, in general, masks the direct sound. This makes it difficult to hear the direct sound as it is drowned out by the reverberant sound.
2. Reflections: The sound can be reflected in many directions by walls, floors, and ceilings. This creates multiple reflections of sound in a room, which causes a 'comb-filtering' effect. This can cause dips or peaks in the frequency response of the room. This makes the sound in a live room sound hollow and unnatural.
3. Distortion: The direct sound can be distorted when it reaches the listener in a live room due to reflections and other factors. This distortion can cause the sound to be harsh, harsh, and brittle. This makes it difficult to listen to music in a live room.
Learn more about sound here:
https://brainly.com/question/32257037
#SPJ11
A 3.9-m-diameter merry-go-round is rotating freely with an angular velocity of 0.70 rad/s. Its total moment of inertia is 1320 kg.m. Four people standing on the ground, each of mass 70 kg suddenly step onto the edge of the merry-go-round. What is the angular velocity of the merry-go-round now? What if the people were on it initially and then jumped off in a radial direction (relative to the merry-go-round)?
The angular velocity of the merry-go-round after the people jump off in a radial direction relative to the merry-go-round is approximately 3.67 rad/s.
To solve this problem, we can use the principle of conservation of angular momentum. The initial angular momentum of the merry-go-round is equal to the final angular momentum after the people step onto it.
Let's calculate the initial angular momentum of the merry-go-round. The moment of inertia of a rotating object can be calculated using the formula:
I = m * r²
where I is the moment of inertia, m is the mass of the object, and r is the radius of rotation.
Given that the total moment of inertia of the merry-go-round is 1320 kg.m, we can find the initial moment of inertia:
1320 kg.m = m_merry-go-round * r²
where m_merry-go-round is the mass of the merry-go-round. Since we only have the diameter (3.9 m) and not the mass, we cannot directly calculate it. However, we don't need the actual value of m_merry-go-round to solve the problem.
Next, let's calculate the initial angular momentum of the merry-go-round using the formula:
L_initial = I_initial * ω_initial
where L_initial is the initial angular momentum, I_initial is the initial moment of inertia, and ω_initial is the initial angular velocity.
Now, when the four people step onto the merry-go-round, their angular momentum will contribute to the total angular momentum of the system. The mass of the four people is 70 kg each, so the total mass added to the system is:
m_people = 4 * 70 kg = 280 kg
The radius of rotation remains the same, which is half the diameter of the merry-go-round:
r = 3.9 m / 2 = 1.95 m
Now, let's calculate the final moment of inertia of the system, considering the added mass of the people:
I_final = I_initial + m_people * r²
Finally, we can calculate the final angular velocity using the conservation of angular momentum:
L_initial = L_final
I_initial * ω_initial = I_final * ω_final
Solving for ω_final:
ω_final = (I_initial * ω_initial) / I_final
Now, let's calculate the values:
I_initial = 1320 kg.m (given)
ω_initial = 0.70 rad/s (given)
m_people = 280 kg
r = 1.95 m
I_final = I_initial + m_people * r²
I_final = 1320 kg.m + 280 kg * (1.95 m)²
ω_final = (I_initial * ω_initial) / I_final
Calculate I_final:
I_final = 1320 kg.m + 280 kg * (1.95 m)²
I_final = 1320 kg.m + 280 kg * 3.8025 m²
I_final = 1320 kg.m + 1069.7 kg.m
I_final = 2389.7 kg.m
Calculate ω_final:
ω_final = (1320 kg.m * 0.70 rad/s) / 2389.7 kg.m
ω_final = 924 rad/(s * kg)
Therefore, the angular velocity of the merry-go-round after the people step onto it is approximately 924 rad/(s * kg).
Now, let's consider the scenario where the people were initially on the merry-go-round and then jumped off in a radial direction relative to the merry-go-round.
When the people jump off in a radial direction, the system loses mass. The final moment of inertia will be different from the initial moment of inertia because the mass of the people is no longer contributing to the rotation. The angular momentum will be conserved again.
In this case, the final moment of inertia will be the initial moment of inertia minus the mass of the people:
I_final_jump = I_initial - m_people * r²
And the final angular velocity can be calculated in the same way:
ω_final_jump = (I_initial * ω_initial) / I_final_jump
Let's calculate the values:
I_final_jump = I_initial - m_people * r²
I_final_jump = 1320 kg.m - 280 kg * (1.95 m)²
ω_final_jump = (1320 kg.m * 0.70 rad/s) / I_final_jump
Calculate I_final_jump:
I_final_jump = 1320 kg.m - 280 kg * (1.95 m)²
I_final_jump = 1320 kg.m - 280 kg * 3.8025 m²
I_final_jump = 1320 kg.m - 1069.7 kg.m
I_final_jump = 250.3 kg.m
Calculate ω_final_jump:
ω_final_jump = (1320 kg.m * 0.70 rad/s) / 250.3 kg.m
ω_final_jump = 3.67 rad/s
Therefore, the angular velocity of the merry-go-round after the people jump off in a radial direction relative to the merry-go-round is approximately 3.67 rad/s.
To learn more about angular velocity visit:
brainly.com/question/30237820
#SPJ11
A 3.0 kg puck slides on frictionless surface at 0.40 m/s and strikes a 4.0 kg puck at rest. The first puck moves off at 0.30 m/s at an angle +35 degrees from the incident direction. What is the velocity of the 4.0 kg puck after the impact?
After the impact, the 4.0 kg puck acquires a velocity of approximately 0.75 m/s in the opposite direction of the incident puck's original motion.
To solve this problem, we can apply the law of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision. The momentum of an object is calculated by multiplying its mass by its velocity.
Before the collision, the total momentum is given by:
Initial momentum = (mass of first puck * velocity of first puck) + (mass of second puck * velocity of second puck)
= (3.0 kg * 0.40 m/s) + (4.0 kg * 0 m/s) [since the second puck is initially at rest]
= 1.2 kg m/s
After the collision, the total momentum is given by:
Final momentum = (mass of first puck * velocity of first puck after collision) + (mass of second puck * velocity of second puck after collision)
= (3.0 kg * 0.30 m/s * cos(35 degrees)) + (4.0 kg * velocity of second puck after collision)
Since the first puck moves off at an angle, we need to use the cosine of the angle to calculate the horizontal component of its velocity.
Solving the equation, we find that the velocity of the 4.0 kg puck after the impact is approximately 0.75 m/s.
Learn more about motion here:
https://brainly.com/question/12640444
#SPJ11
What is the relationship between power and energy? Describe an example of where power (and efficiency) calculations are important in society.
What is the speed of a 5.0 kg ball if its kinetic energy is 40 J?
Work is equal to:
A. The change in energy in a system.
B. The total energy in a system.
C. The type of energy in a system
D. Work and energy are not related.
The relationship between power(P) and energy(E) is P = W/t. An example where power and efficiency calculations are important in society is the field of transportation. The speed of a 5.0 kg ball when its kinetic energy is 40 J, is 4 m/s. Work is equal to the change in energy in a system i.e., Option A is the correct answer.
The relationship between power and energy can be described as follows:
Power is the rate at which energy is transferred or work is done.
In other words, power measures how quickly energy is being used or produced.
Mathematically, power (P) is defined as the amount of energy (E) transferred or work (W) done per unit of time (t), represented as P = E/t or P = W/t.
Therefore, power and energy are related through the concept of time.
An example where power and efficiency calculations are important in society is the field of transportation.
For instance, in the automotive industry, calculating the power output and efficiency of an engine is crucial.
Power calculations help determine the engine's capability to generate the necessary force to propel the vehicle, while efficiency calculations measure how effectively the engine converts fuel energy into useful work.
These calculations aid in designing more fuel-efficient engines, improving performance, and reducing environmental impact.
To find the speed of a 5.0 kg ball given its kinetic energy of 40 J, we can use the equation for kinetic energy (KE) which is given by KE = (1/2)m[tex]v^2[/tex], where m is the mass of the object and v is its velocity or speed.
Rearranging the equation, we have v = [tex]\sqrt[/tex](2KE/m). Plugging in the values, we get v = [tex]\sqrt[/tex]((2 * 40 J) / 5.0 kg) = [tex]\sqrt[/tex](16) = 4 m/s.
Work is equal to the change in energy in a system. Option A is the correct answer.
When work is done on or by a system, it results in a change in energy. Work transfers energy from one form to another or changes the energy within the system.
Therefore, work and energy are indeed related.
Learn more about speed here:
https://brainly.com/question/13943409
#SPJ11
Which of the following magnetic fluxes is zero? B = 4Tî – 3TÂ and А A= -3m%j + 4m2 B = 4T - 3Tk and A = 3m² – 3m2; O B = 4T - 3TR B 3ТА and A = 3m2 – 3m29 + 4m²k 0 B = 4TÊ – 3T and A = 3m2 + 3mºj - 4m²k
Of the following magnetic fluxes is zero. the magnetic flux is zero for Option D, where B = 4Tî - 3T and A = 3m² + 4m²k.
To determine which of the given magnetic fluxes is zero, we need to calculate the dot product of the magnetic field vector B and the vector A. If the dot product is zero, it means that the magnetic flux is zero.
Let's examine each option:
Option A: B = 4Tî - 3TÂ and A = -3m%j + 4m²k
The dot product of B and A is:
B · A = (4T)(-3m%) + (-3T)(4m²) + (0)(0) = -12Tm% - 12Tm²
Since the dot product is not zero, the magnetic flux is not zero.
Option B: B = 4T - 3Tk and A = 3m² - 3m²
The dot product of B and A is:
B · A = (4T)(3m²) + (0)(-3Tk) + (-3T)(0) = 12Tm² + 0 + 0
Since the dot product is not zero, the magnetic flux is not zero.
Option C: B = 4TÊ - 3T and A = 3m² + 3mºj - 4m²k
The dot product of B and A is:
B · A = (0)(3m²) + (-3T)(3mº) + (4T)(-4m²) = 0 - 9Tmº - 16Tm²
Since the dot product is not zero, the magnetic flux is not zero.
Option D: B = 4Tî - 3T and A = 3m² + 4m²k
The dot product of B and A is:
B · A = (4T)(3m²) + (0)(0) + (-3T)(4m²) = 12Tm² + 0 + (-12Tm²)
The dot product simplifies to zero.
Therefore, in Option D, the magnetic flux is zero.
Learn more about magnetic field here:
https://brainly.com/question/7645789
#SPJ11
Question 10 (2 points) Listen A concave mirror has a focal length of 15 cm. An object 1.8 cm high is placed 22 cm from the mirror. The image description is and Oreal; upright virtual; upright virtual; inverted real; inverted Question 11 (2 points) Listen Which one of the following statements is not a characteristic of a plane mirror? The image is real. The magnification is +1. The image is always upright. The image is reversed right to left.
The image description for the given concave mirror is inverted and real. Now, considering the characteristics of a plane mirror, the statement that is not true is: The image is real.
In a plane mirror, the image formed is always virtual, meaning it cannot be projected onto a screen. The reflected rays appear to come from behind the mirror, forming a virtual image. Therefore, the statement "The image is real" is not a characteristic of a plane mirror.
The other statements are true for a plane mirror:
The magnification is +1: The magnification of a plane mirror is always +1, which means the image is the same size as the object. The image is always upright: The image formed by a plane mirror is always upright, meaning it has the same orientation as the object.
The image is reversed right to left: The image in a plane mirror appears to be reversed from left to right, but not from right to left. This reversal is due to the mirror's reflective properties.
In summary, the statement "The image is real" is not a characteristic of a plane mirror.
Learn more about mirror here:
https://brainly.com/question/3627454
#SPJ11
A light ray is incident at an angle of 20° on the surface between air and water. At what angle in degrees does the refracted ray make with the perpendicular to the surface when is incident from the air side? Use index of refraction for air as 1.0 while water 1.33. (Express your answer in 2 decimal place/s, NO UNIT REQUIRED)
When a light ray passes from air to water, it refracts bends due to the change in refractive index. In this case, the angle of incidence is 20° and the refracted ray makes an angle of 27.53° with the perpendicular to the surface.
When a light ray passes from one medium to another, it bends due to the change in speed caused by the change in the refractive index of the materials. The relationship between the angles of incidence and refraction is given by Snell's Law, which states that:
n₁sinθ₁ = n₂sinθ₂
where n₁ and n₂ are the refractive indices of the two media, θ₁ is the angle of incidence, and θ₂ is the angle of refraction.
In this problem, n₁ = 1.0 (the refractive index of air) and n₂ = 1.33 (the refractive index of water). The angle of incidence θ₁ = 20°.
Using Snell's law, we can solve for the angle of refraction θ₂:
sinθ₂ = (n₁/n₂)sinθ₁
sinθ₂ = (1.0/1.33)sin20°
sinθ₂ = 0.4494
Taking the inverse sine of both sides, we get:
θ₂ = 27.53°
Therefore, the refracted ray makes an angle of 27.53° with the perpendicular to the surface when it is incident from the air side.
To know more about refraction, visit:
brainly.com/question/14760207
#SPJ11
An object with initial momentum 2 kgm/s to the left is acted upon by a force F = 48 N to the right for a short time interval, At. a At the end of this time interval, the momentum of the object is 4 kgm/s to the right. How long was the time interval, At ? O 1/8 s O 1/6 s O 1/12 s O 1/4 s O 1/2 s O 1/24 s o 1/16 s
The initial momentum of an object is 2 kgm/s to the left. A force of 48 N is applied to the right for a short time interval. The final momentum of the object is 4 kgm/s to the right. The duration of the time interval is 1/8 s.
According to Newton's second law of motion, the change in momentum of an object is equal to the product of the force acting on it and the time interval during which the force is applied. In this case, the initial momentum of the object is 2 kgm/s to the left, and the force acting on it is 48 N to the right. The final momentum of the object is 4 kgm/s to the right.
Using the equation
Δp = F * At,
where Δp is the change in momentum, F is the force, and At is the time interval, solving for At.
The change in momentum is given by
Δp = final momentum - initial momentum = 4 kgm/s - (-2 kgm/s) = 6 kgm/s.
The force F is 48 N.
Substituting these values into the equation, we have 6 kgm/s = 48 N * At.
Solving for At,
At = (6 kgm/s) / (48 N) = 1/8 s.
Therefore, the time interval, At, is 1/8 s.
Learn more about momentum here:
https://brainly.com/question/30677308
#SPJ11
What is the Nature of Science and interdependence of science, engineering, and technology regarding current global concerns?
Discuss a current issue that documents the influence of engineering, technology, and science on society and the natural world.
And answer the following questions:
How has this issue developed (history)?
What are the values and attitudes that interact with this issue?
What are the positive and negative impacts associated with this issue?
What are the current and alternative policies associated with this issue and what are the strategies for achieving these policies?
The issue of reducing fossil fuel use and mitigating climate change requires the development of alternative energy sources through science, engineering, and technology. This involves implementing policies such as carbon taxes, incentives for renewable energy, and investment in research and development.
The nature of science refers to the methodology and principles that scientists use to investigate the natural world. It is the system of obtaining knowledge through observation, testing, and validation. On the other hand, engineering involves designing, developing, and improving technology and machines to address social and economic needs. Technology is the application of scientific knowledge to create new products, devices, and tools that improve people’s quality of life.
One current global concern is the use of fossil fuels and the resulting greenhouse gas emissions that contribute to climate change. The interdependence of science, engineering, and technology is crucial to developing alternative energy sources that can reduce our dependence on fossil fuels.
How has this issue developed (history)?
The burning of fossil fuels has been an integral part of the world economy for over a century. As the world population and economy have grown, the demand for energy has increased, resulting in increased greenhouse gas emissions. The development of alternative energy sources has been ongoing, but it has not yet been adopted on a large scale.
What are the values and attitudes that interact with this issue?
Values and attitudes towards climate change and the environment are essential factors in determining how society deals with this issue. There is a need for increased awareness and understanding of the issue and the need for action. However, some people may resist change due to economic or political interests.
What are the positive and negative impacts associated with this issue?
Positive impacts of alternative energy sources include reduced greenhouse gas emissions and air pollution, improved public health, and the creation of new job opportunities. Negative impacts include the high initial cost of implementing alternative energy sources and the potential loss of jobs in the fossil fuel industry.
What are the current and alternative policies associated with this issue and what are the strategies for achieving these policies?
Current policies include carbon taxes, renewable energy incentives, and regulations on greenhouse gas emissions. Alternative policies include cap-and-trade systems and subsidies for renewable energy research and development. Strategies for achieving these policies include increased public awareness and education, political advocacy, and investment in research and development.
Learn more about technology
https://brainly.com/question/7788080
#SPJ11
In a perfect conductor, electric field is zero everywhere. (a) Show that the magnetic field is constant (B/at = 0) inside the conductor. (5 marks) (b) Show that the current is confined to the surface. (5 marks) (c) If the sphere is held in a uniform magnetic field Bî. Find the induced surface current density
(a) Inside a perfect conductor, the electric field is zero. From Faraday's law, ∇ × E = -∂B/∂t. Since ∇ × E = 0, we have -∂B/∂t = 0, which implies that the magnetic field B is constant inside the conductor.
(b) According to Ampere's law, ∇ × B = μ₀J, where J is the current density. Since B is constant inside the conductor , ∇ × B = 0. Therefore, μ₀J = 0, which implies that the current density J is zero inside the conductor. Hence, the current is confined to the surface.
(c) When a conductor is moved in a uniform magnetic field, an induced current is produced to oppose the change in magnetic flux. The induced surface current density J_induced can be found using
J_induced = σE_induced
Since the sphere is held in a uniform magnetic field Bî, the induced electric field E_induced is given by E_induced = -Bv.
Therefore, the induced surface current density J_induced = -σBv, where σ is the conductivity of the sphere.
Learn more about electric field here:
https://brainly.com/question/28027633
#SPJ11
Required information Photoelectric effect is observed on two metal surfaces. Light of wavelength 300.0 nm is incident on a metal that has a work function of 2.70 eV. What is the maximum speed of the emitted electrons? m/s
The maximum speed of the emitted electrons, resulting from the photoelectric effect when light with a wavelength of 300.0 nm is incident on a metal, is approximately 5.94 x [tex]10^{5}[/tex] m/s.
The maximum speed of the emitted electrons can be determined using the equation for the kinetic energy of an electron in the photoelectric effect: KE = hν - Φ, where KE is the kinetic energy of the electron, h is Planck's constant, ν is the frequency of the incident light (which can be calculated using the speed of light and the wavelength), and Φ is the work function of the metal.
First, we need to calculate the frequency of the incident light. The speed of light can be given as c = λν, where c is the speed of light, λ is the wavelength of the light, and ν is the frequency. Rearranging the equation, we find ν = c/λ. Substituting the given values, the frequency is ν = (3.00 x [tex]10^{8}[/tex]m/s) / (300.0 x [tex]10^{-9}[/tex] m) = 1.00 x [tex]10^{15}[/tex] Hz.
Next, we can calculate the kinetic energy of the emitted electron using KE = (6.63 x [tex]10^{-34}[/tex]J s) * (1.00 x [tex]10^{15}[/tex] Hz) - (2.70 eV * 1.60 x [tex]10^{-19}[/tex] J/eV). Converting the electron volt (eV) to joules (J), the kinetic energy is approximately 9.35 x [tex]10^{-19}[/tex] J.
Finally, we can calculate the maximum speed of the emitted electrons using the equation KE = (1/2)m[tex]v^{2}[/tex], where m is the mass of the electron. Rearranging the equation, we find [tex]v = \sqrt{\frac{2K.E}{m} }[/tex].Substituting the values, the maximum speed of the emitted electrons is approximately 5.94 x [tex]10^{5}[/tex] m/s.
Learn more about photoelectric here:
https://brainly.com/question/9260704
#SPJ11
The simulation does not provide an ohmmeter to measure resistance. This is unimportant for individual resistors because you can click on a resistor to find its resistance. But an ohmmeter would help you verify your rule for the equivalent resistance of a group of resistors in parallel (procedure 5 in the Resistance section above). Since you have no ohmmeter, use Ohm's law to verify your rule for resistors in parallel.
Ohm's law can be used to verify our rule for resistors in parallel.
How to verify with Ohm's law?Recall that the rule for resistors in parallel is that the equivalent resistance is equal to the reciprocal of the sum of the reciprocals of the individual resistances.
For example, if there are two resistors in parallel, R₁ and R₂, the equivalent resistance is:
R_eq = 1 / (1/R₁ + 1/R₂)
Verify this rule using Ohm's law.
V = IR
where V is the voltage, I is the current, and R is the resistance.
If a voltage source V connected to two resistors in parallel, R1 and R₂, the current through each resistor will be:
I₁ = V / R₁
I₂ = V / R₂
The total current through the circuit will be the sum of the currents through each resistor:
I_total = I₁ + I₂
Substituting the equations for I₁ and I₂, get the following equation:
I_total = V / R₁ + V / R₂
Rearrange this equation to get the following equation for the equivalent resistance:
R_eq = V / I_total = 1 / (1/R₁ + 1/R₂)
This is the same equation for the equivalent resistance of two resistors in parallel as the rule stated earlier.
Find out more on Ohm's law here: https://brainly.com/question/231741
#SPJ4
A mixture of 0.750 kg of ice and 0.250 kg of water are in an equilibrium state at 0° C. Some ice
melts such that the mass of ice and water are evenly distributed with 0.5 kg each and the system
remains at 0° C. What is the change in entropy of the mixture?
The heat of fusion of water is 333 kJ/kg.
The change in entropy of the mixture is approximately 0.305 kJ/K. Entropy is the measurement of the amount of thermal energy per unit of temperature in a system that cannot be used for productive labour.
To find the change in entropy of the mixture, we need to consider the entropy change during the phase transition of the ice melting.
The heat of fusion, denoted as ΔH_fus, is the amount of heat required to change 1 kg of a substance from solid to liquid at its melting point. In this case, the heat of fusion of water is given as 333 kJ/kg.
First, let's calculate the amount of heat required to melt the ice:
Q = m * ΔH_fus
Where:
Q is the heat absorbed (or released) during the phase transition,
m is the mass of the ice that melted.
Given that the mass of the ice that melted is 0.250 kg, we can calculate:
Q = 0.250 kg * 333 kJ/kg = 83.25 kJ
Since the ice and water are in an equilibrium state at 0°C, the entire system remains at the melting point temperature. Therefore, there is no change in temperature, and we can assume that the heat absorbed by the ice is equal to the heat released by the water. Thus, the total change in entropy of the mixture can be calculated using the formula:
ΔS = Q / T
Where:
ΔS is the change in entropy,
Q is the heat absorbed or released,
T is the temperature in Kelvin.
The temperature remains constant at 0°C, which is 273.15 K. Plugging in the values:
ΔS = 83.25 kJ / 273.15 K ≈ 0.305 kJ/K
To know more about entropy
https://brainly.com/question/32167470
#SPJ11
The period of a simple pendulum on the surface of Earth is 2.29 s. Determine its length .
A simple pendulum is a mass suspended from a cable or string that swings back and forth. The period of a simple pendulum is the time it takes to complete one cycle or oscillation. The length of the simple pendulum is approximately 0.56 meters.
The formula for the period of a simple pendulum is:
T = 2π√(L/g)
Where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. Since the period of the pendulum and the acceleration due to gravity on Earth are known, we can use this formula to solve for L.
T = 2.29 s (given)
g = 9.81 m/s² (acceleration due to gravity on Earth)
We can now solve for L:
L = (T²g)/(4π²)
Substitute the values: L = (2.29 s)²(9.81 m/s²)/(4π²)
L = 0.56 m (rounded to two decimal places)
To learn more about simple pendulum, refer:-
https://brainly.com/question/29183311
#SPJ11
An energy of 30.0 eV is required to ionize a molecule of the gas inside a Geiger tube, thereby producing an ion pair. Suppose a particle of ionizing radiation deposits 0.430 MeV of energy in this Geiger tube. What maximum number of ion pairs can it create?
The maximum number of ion pairs that the particle of ionizing radiation can create is 7167 ion pairs.
Geiger-Muller counters or tubes are used to detect ionizing radiation. Ionization chambers are used to measure radiation levels in the environment. Ionization is a process that involves the removal of electrons from an atom or molecule, converting it to a positively charged ion. The amount of energy required to ionize an atom or molecule is dependent on its electron arrangement.
The amount of energy required to ionize a molecule of gas in a Geiger tube is 30.0 eV. A particle of ionizing radiation deposits 0.430 MeV of energy in this Geiger tube, which means that the particle has enough energy to ionize a number of molecules of gas inside the tube. Therefore, we have to find the maximum number of ion pairs that it can create.
The first step in calculating the maximum number of ion pairs is to find the number of electrons that can be ionized by the particle of ionizing radiation.
The number of electrons that can be ionized by the particle of ionizing radiation can be found using the following formula:
Number of electrons ionized = Energy deposited / Ionization energyIn this case, the energy deposited is 0.430 MeV or 430,000 eV, and the ionization energy is 30.0 eV.
Number of electrons ionized = 430,000 eV / 30.0 eV = 14,333.33
The maximum number of ion pairs can be found by dividing the number of electrons ionized by 2, since each ionization produces a positive ion and a free electron.
Maximum number of ion pairs = Number of electrons ionized / 2Maximum number of ion pairs = 14,333.33 / 2 = 7167 ion pairs
Therefore, the maximum number of ion pairs that the particle of ionizing radiation can create is 7167 ion pairs.
Learn more about radiation at: https://brainly.com/question/31285748
#SPJ11
What is the maximum speed at which a car may travel over a humpbacked bridge of radius 15 m without leaving the ground?
The maximum speed at which a car may travel over a humpbacked bridge of radius 15 m without leaving the ground is approximately 12.1 m/s. A humpbacked bridge of radius 15 meters is modeled by a circle.
The car will leave the ground if the normal force exerted by the road on the car becomes zero. At that point, the gravitational force acting on the car will be the only force acting on the car. This means that the car will be in free fall. So, the maximum speed of the car without leaving the ground can be calculated using the formula:
vmax = √rg
where vmax is the maximum speed, r is the radius of the circle, and g is the acceleration due to gravity. We are given r = 15 m. g = 9.81 m/s², since the bridge is on the surface of the Earth.
vmax = √(rg) = √(15*9.81) = √147.15 ≈ 12.1 m/s
To learn more about speed, refer:-
https://brainly.com/question/28224010
#SPJ11
Trying to earn a fishy treat, a killer whale at an aquarium excitedly slaps the water 2 times every second. If the waves that are produced travel at 0.9 m/s, what is their wavelength?
The formula for calculating wavelength is;λ = v/fWhere;λ = Wavelengthv = velocityf = frequency Frequency is measured in Hertz (Hz), while wavelength is measured in meters (m).
The frequency of the wave that is produced by the killer whale is 2 times per second. It implies that the time interval between each wave produced is 1/2 seconds.The wave velocity is 0.9 m/s.
Therefore;Wavelength = velocity / frequencyWhere;Frequency = 2 times/secondWavelength = 0.9 / 2Wavelength = 0.45 mThe wavelength of the waves produced by the killer whale is 0.45 meters.Explanation:In simple terms, frequency is the number of waves produced in one second.
On the other hand, wavelength is the distance between two corresponding points on the wave; for example, from peak to peak or from trough to trough. Wavelength is calculated by dividing the velocity of a wave by its frequency.
The formula for calculating wavelength is;λ = v/fWhere;λ = Wavelengthv = velocityf = frequencyFrequency is measured in Hertz (Hz), while wavelength is measured in meters (m).
to know more about Frequency
https://brainly.com/question/254161
#SPJ11
The output power of a 400/690 V, 50 Hz, Y-connected induction motor, shown below, is 15 kW. It runs at full load with a speed of 2940 RPM. Choose the correct statement: The motor's synchronous speed is 3000 RPM and its rated power is 30 HP. O The motor's synchronous speed is 2500 RPM at 50 Hz. O The motor has 2 poles and operates at a slip of 6%. o The motor torque at full load is 48.4 Nm O The motor has 4 poles and operates at a slip of 2%.
The correct statement is that the motor has 4 poles and operates at a slip of 2%. and the motor torque at full load is 48.4 Nm
Synchronous speed of induction motor The synchronous speed (N_s) of an induction motor is calculated using the below formula: N_s = (f/P) × 120 where, f is the frequency of the power supply applied P is the number of poles in the motor
From the above formula, we get the synchronous speed of the motor = (50/2) × 120 = 3000 RPM
The motor operates at a slip of 2%.
The speed of the motor is given by, Speed of motor (N) = Synchronous speed – Slip speed where Slip speed = (Slip × Synchronous speed) / 100
Now, Speed of motor (N) = 3000 – (2% × 3000) = 2940 RPM
Therefore, the motor has 4 poles. The rated power of the motor is given as 15 kW, which is equal to 20 HP (1 HP = 0.746 kW).
So, the motor's rated power is 20 HP.
The formula for calculating the motor torque is given by the below formula, T = (P × 60) / (2 × π × N) Where, P = Output power of the motor
N = Speed of the motor
Substituting the values we get, T = (15 × 60) / (2 × π × 2940) = 48.4 Nm
Therefore, the motor torque at full load is 48.4 Nm.
know more about Synchronous speed
https://brainly.com/question/31605298
#SPJ11
The complete question is -
The output power of a 400/690 V, 50 Hz, Y-connected induction motor, shown below, is 15 kW. It runs at full load with a speed of 2940 RPM. Choose the correct statement:
o The motor's synchronous speed is 3000 RPM and its rated power is 30 HP.
O The motor torque at full load is 48.4 Nm O The motor has 4 poles and operates at a slip of 2%.
O The motor has 2 poles and operates at a slip of 6%.
O The motor's synchronous speed is 2500 RPM at 50 Hz.
An electron travels at a speed of 2.0×107 ms in a plane perpendicular to a magnetic field of 0.010 T. Determine the path of its orbit, the period, and the frequency of rotation.
The path of the electron's orbit is a circle with a radius of approximately 0.715 meters. The period of rotation is approximately [tex]2.25 * 10^-^7[/tex]seconds, and the frequency of rotation is approximately [tex]4.44 * 10^6 Hz[/tex].
When an electron moves perpendicular to a magnetic field, it experiences a magnetic force that acts as the centripetal force, keeping the electron in a circular path. The centripetal force can be equated to the magnetic force:
[tex]mv^2/r = qvB[/tex]
Where m is the mass of the electron, v is its velocity, r is the radius of the orbit, q is the charge of the electron, and B is the magnetic field strength.
We can rearrange the equation to solve for the radius of the orbit:
r = mv/(qB)
Substituting the given values, we have:
[tex]r = (9.11 * 10^{-31} kg)(2.0 * 10^7 ms)/((1.6 * 10^-{19} C)(0.010 T))[/tex]
Calculating this, we find the radius of the orbit to be approximately 0.715 meters.
To determine the period, we use the equation:
T = 2πr/v
Substituting the values:
[tex]T = 2\pi(0.715 m)/(2.0 * 10^7 ms)[/tex]
Calculating this, we find the period to be approximately [tex]2.25 * 10^-^7[/tex]seconds.
The frequency of rotation can be found using the equation:
f = 1/T
Substituting the period value, we get:
[tex]f = 1/(2.25 * 10^-^7 s)[/tex]
Calculating this, we find the frequency of rotation to be approximately [tex]4.44 * 10^6 Hz[/tex].
Learn more centripetal force here:
https://brainly.com/question/14021112
#SPJ11
A coil of conducting wire carries a current i. In a time interval of At = 0.490 s, the current goes from i = 3.20 A to iz = 2.20 A. The average emf induced in the coil is a = 13.0 mv. Assuming the current does not change direction, calculate the coil's inductance (in mH). mH
The average emf induced in a coil is given by the equation: ε = -L(dI/dt) Therefore, the inductance of the coil is: L = 6.37 mH
ε = -L(dI/dt)
where ε is the average emf, L is the inductance, and dI/dt is the rate of change of current.
In this case, the average emf is given as 13.0 mV, which is equivalent to 0.013 V. The change in current (dI) is given by:
dI = i_final - i_initial
= 2.20 A - 3.20 A = -1.00 A
The time interval (Δt) is given as 0.490 s.
Plugging these values into the equation, we have:
0.013 V = -L(-1.00 A / 0.490 s)
Simplifying the equation:
0.013 V = L(1.00 A / 0.490 s)
Now we can solve for L:
L = (0.013 V) / (1.00 A / 0.490 s)
= (0.013 V) * (0.490 s / 1.00 A)
= 0.00637 V·s/A
Since the unit for inductance is henries (H), we need to convert volts·seconds/ampere to henries:
1 H = 1 V·s/A
Therefore, the inductance of the coil is:
L = 0.00637 H
Converting to millihenries (mH):
L = 0.00637 H * 1000
= 6.37 mH
So, the coil's inductance is 6.37 mH.
Learn more about inductance here
https://brainly.com/question/31127300
#SPJ11