A pulley has an IMA of 13 and an AMA of 6. If the input of the pulley is pulled 13.9 m, how far will the output move?
______ m If the input of the pulley is pulled with a force of 2300 N, how much force will act at the output end of the pulley? ______N Calculate the % efficiency of the pulley.

Answers

Answer 1

If the input of the pulley is pulled with a force of 2300 N, the force will act at the output end of the pulley is 180.7 m .

The force acting at the output end of the pulley is 13800 N.

The % efficiency of the pulley is approximately 46.15%.

To solve this problem, we can use the formulas for the Ideal Mechanical Advantage (IMA), Actual Mechanical Advantage (AMA), and efficiency of a pulley system.

Given:

IMA = 13

AMA = 6

Input distance = 13.9 m

Input force = 2300 N

(a) To find the output distance, we can use the formula:

IMA = Output distance / Input distance

Rearranging the formula, we get:

Output distance = IMA * Input distance

Substituting the given values, we have:

Output distance = 13 * 13.9 = 180.7 m

Therefore, the output will move 180.7 m.

(b) To find the force at the output end, we can use the formula:

AMA = Output force / Input force

Rearranging the formula, we get:

Output force = AMA * Input force

Substituting the given values, we have:

Output force = 6 * 2300 = 13800 N

Therefore, the force acting at the output end of the pulley is 13800 N.

(c) To calculate the efficiency of the pulley, we can use the formula:

Efficiency = (AMA / IMA) * 100%

Substituting the given values, we have:

Efficiency = (6 / 13) * 100% ≈ 46.15%

Therefore, the % efficiency of the pulley is approximately 46.15%.

TO know more about Ideal Mechanical Advantage (IMA)

https://brainly.com/question/17457168

#SPJ11


Related Questions

A bug of mass 0.026 kg is at rest on the edge of a solid cylindrical disk (M=0.10 kg,R=0.13 m) rotating in a horizontal plane around the vertical axis through its center. The disk is rotating at 14.5rad/s. The bug crawls to the center of the disk. (a) What is the new angular velocity of the disk (in rad/s)? (Enter the magnitude. Round your answer to at least one decimal place.) rad/s (b) What is the change in the kinetic energy of the system (in J)? स ] (c) If the bug crawls back to the outer edge of the disk, what is the angular velocity of the disk (in rad/s) then? (Enter the magnitude.) rad/s (d) What is the new kinetic energy of the system (in J)? J (e) What is the cause of the increase and decrease of kinetic energy? The work of the bug crawling on the disk causes the kinetic energy to increase or decrease. Score: 1 out of 1 Comment:

Answers

a)The new angular velocity of the disk is 1.45 rad/s.b)Change in the kinetic energy of the system is given by:ΔK=-0.592 J.c)The new angular velocity of the disk is 1.45 rad/s.d)New kinetic energy of the system is given by:Kf = 0.385 J.e)The cause of the increase and decrease of kinetic energy is the work done by the bug.

Given data: Mass of the bug = m₁ = 0.026 kgMass of the disk = M = 0.10 kgRadius of the disk = R = 0.13 mInitial angular velocity of the disk = ω₁ = 14.5 rad/sInitial moment of inertia of the disk = I₁ = (1/2)MR²Final moment of inertia of the disk = I₂ = (1/2)M(R/2)² + M(3R/2)² = 5MR²/4 = 0.08125 kg-m².

Let the new angular velocity of the disk be ω₂. Then, using the law of conservation of angular momentum, we get:I₁ω₁ = I₂ω₂ω₂ = I₁ω₁/I₂ω₂ = (0.5 × 0.10 × (0.13)² × 14.5)/(0.08125 × 14.5) = 1.45 rad/sTherefore, the new angular velocity of the disk is 1.45 rad/s.

Change in the kinetic energy of the system is given by:ΔK = Kf - Ki = (1/2)I₂ω₂² - (1/2)I₁ω₁² = (1/2)(0.08125)(1.45² - 14.5²) J= -0.592 J (negative sign indicates decrease in kinetic energy)If the bug crawls back to the outer edge of the disk, then the new angular velocity of the disk is the same as the initial angular velocity (since the angular momentum is conserved):ω₃ = ω₁ = 14.5 rad/s.

New kinetic energy of the system is given by:Kf = (1/2)I₁ω₁² = (1/2)(0.10)(0.13)²(14.5)² J= 0.385 J.

The cause of the increase and decrease of kinetic energy is the work done by the bug. When the bug crawls towards the center of the disk, it does negative work (i.e. work done by external force is negative) and the kinetic energy of the system decreases.

When the bug crawls towards the outer edge of the disk, it does positive work (i.e. work done by external force is positive) and the kinetic energy of the system increases.

Learn more about velocity here,

https://brainly.com/question/80295

#SPJ11

Dara and Cameron are studying projectile motion in their physics lab class. They set up a Pasco projectile launcher on the edge of their lab table, so that the ball will be launched at an initial height of H=33.5 inches, initial velocity of v
0

=3.4 m/s and an initial angle of θ 0

=37 ∘
(see diagram). They can then record the landing location by placing a piece of carbon paper on the floor some distance away from the launcher. When the ball lands, it will make a mark on the carbon paper. a) Find horizontal component of initial velocity (two significant figures please). σ 4
b) Find vertical component of initial velocity (two significant figures please). β c) Find the maximum height of the motion (two significant figures please). d) Find the landing location on carbon paper (three significant figures this time).

Answers

a) The horizontal component of initial velocity is 2.722 m/s.b) The vertical component of initial velocity is 2.023 m/s.c) The maximum height of the motion is 0.982 m.d) The landing location on carbon paper is 1.746 m.

Projectile motion is the path of an object through the air when it's acted upon by gravity. It's described as a two-dimensional motion since the object is moving in two directions. It has horizontal and vertical components, and each component is independent of the other. It can be calculated with the help of horizontal and vertical components of initial velocity, time, and acceleration due to gravity.

Projectile motion can be studied with the help of a Pasco projectile launcher, and it involves finding the horizontal component of initial velocity, vertical component of initial velocity, maximum height of the motion, and the landing location on carbon paper.a) To find the horizontal component of initial velocity, we can use the following formula:v₀ = v₀ cos(θ₀)Where v₀ is the initial velocity, and θ₀ is the initial angle. We're given:v₀ = 3.4 m/sθ₀ = 37°.

Therefore:v₀ = 3.4 cos(37°)v₀ ≈ 2.722 m/sThe horizontal component of initial velocity is 2.722 m/s. (to two significant figures)b) To find the vertical component of initial velocity, we can use the following formula:v₀ = v₀ sin(θ₀)Where v₀ is the initial velocity, and θ₀ is the initial angle. We're given:v₀ = 3.4 m/sθ₀ = 37°Therefore:v₀ = 3.4 sin(37°)v₀ ≈ 2.023 m/sThe vertical component of initial velocity is 2.023 m/s. (to two significant figures)c) To find the maximum height of the motion, we can use the following formula:y = H + v₀² sin²(θ₀) / 2gWhere H is the initial height, v₀ is the initial velocity, θ₀ is the initial angle, and g is the acceleration due to gravity.

We're given:H = 33.5 in = 0.8509 mv₀ = 3.4 m/sθ₀ = 37°g = 9.81 m/s²Therefore:y = 0.8509 + (3.4² sin²(37°)) / (2 x 9.81)y ≈ 0.982 mThe maximum height of the motion is 0.982 m. (to two significant figures)d) .

To find the landing location on carbon paper, we can use the following formula:x = v₀ cos(θ₀) tWhere v₀ is the initial velocity, θ₀ is the initial angle, and t is the time taken. The time taken can be calculated with the help of the following formula:y = H + v₀ sin(θ₀) t - 1/2 g t²Where H is the initial height, v₀ is the initial velocity, θ₀ is the initial angle, and g is the acceleration due to gravity. We're given:H = 33.5 in = 0.8509 mv₀ = 3.4 m/sθ₀ = 37°g = 9.81 m/s²We can convert the initial height into meters:0.8509 m = 2.79 ftv₀y = v₀ sin(θ₀) = 2.023 m/st = v₀y / g + sqrt(2gh) / gWe can plug in the values: t = 2.023 / 9.81 + sqrt(2 x 9.81 x 0.8509) / 9.81t ≈ 0.421 sThe time taken is 0.421 seconds. (to three significant figures).

Now we can find the landing location:x = v₀ cos(θ₀) tWhere v₀ is the initial velocity, θ₀ is the initial angle, and t is the time taken. We're given:v₀ = 3.4 m/sθ₀ = 37°t = 0.421 sTherefore:x = 3.4 cos(37°) x 0.421x ≈ 1.746 mThe landing location on carbon paper is 1.746 m. (to three significant figures)

Answer:a) The horizontal component of initial velocity is 2.722 m/s. (to two significant figures)b) The vertical component of initial velocity is 2.023 m/s. (to two significant figures)c) The maximum height of the motion is 0.982 m. (to two significant figures)d) The landing location on carbon paper is 1.746 m. (to three significant figures)

Learn more about Pasco projectile here,

https://brainly.com/question/8104921

#SPJ11

Tarik winds a small paper tube uniformly with 189 turns of thin wire to form a solenoid. The tube's diameter is 6.21 mm and its length is 2.01 cm. What is the inductance, in microhenrys, of Tarik's solenoid? inductance: μH

Answers

The inductance of Tarik's solenoid in μH is 13.4 μH.

To find the inductance of Tarik's solenoid, we can use the following formula:

L=μ0 * n^2 * A/L, Where:L is the inductance of the solenoid, n is the number of turns, A is the cross-sectional area of the solenoid, L is the length of the solenoid, μ0 is the permeability of free space (4π x 10^-7 H/m)

Given that: The number of turns of wire is n = 189The diameter of the tube is 6.21 mm, therefore the radius of the tube, r = 6.21 / 2 = 3.105 mm

The length of the tube, L = 2.01 cm = 0.0201 m

The cross-sectional area of the tube, A = πr^2 = 3.14 x (3.105 x 10^-3)^2 = 7.59 x 10^-5 m^2

Substituting the given values into the formula:

L=μ0 * n^2 * A/L= 4π x 10^-7 x 189^2 x 7.59 x 10^-5 / 0.0201L=13.4 μH

Therefore, the inductance of Tarik's solenoid is 13.4 μH (microhenrys).

To learn about inductance here:

https://brainly.com/question/31307060

#SPJ11

Two wires carrying a 3.4-A current in opposite directions are 0.013m apart. What is the force per unit length on each wire?
Answer: x 10⁻⁴N/m
Is the force attractive or repulsive?
Answer:

Answers

The force per unit length on each wire is 10⁻⁴ N/m and the force is repulsive.

The current passing through the wires I = 3.4A

Distance between the two wires is d = 0.013m

The force per unit length on each wire is calculated using the formula:

F/L = μ₀I¹I²/2πd

Where,

F/L is the force per unit length

μ₀ is the permeability constant

I¹ and I² are the currents passing through the wires

2πd is the separation between the two wires

Substituting the values in the formula, we get

F/L = (4π x 10⁻⁷ Tm/A) x (3.4A)² / 2π(0.013m)

     = 10⁻⁴ N/m

Therefore, the force per unit length on each wire is 10⁻⁴ N/m.

The two wires carrying current in opposite directions repel each other. Therefore, the force is repulsive.

Learn more about the force per unit length:

brainly.com/question/18917488

#SPJ11

Perhaps to confuse a predator, some tropical gyrinid beetles (whirligig beetles) are colored by optical interference that is due to scales whose alignment forms a diffraction grating (which scatters light instead of transmiting it). When the incident light rays are perpendicular to the grating, the angle between the first-order maxima (on opposite sides of the zeroth-order maximum) is about 26° in light with a wavelength of 550 nm. What is the grating spacing of the beetle?

Answers

The grating spacing of the beetle with first-order maxima of 26° is 1083 nm.

The first-order maxima of the tropical gyrinid beetles colored by optical interference is at an angle of about 26° in light with a wavelength of 550 nm. We are to determine the grating spacing of the beetle.

Grating spacing is denoted by the letter d.

The angle between the first-order maxima and zeroth-order maximum (on opposite sides) is given by the formula:

sinθ = mλ/d

where;

m = 1 for the first-order maxima

λ = wavelength

d = grating spacing

θ = 26°

We can rearrange the formula to find d; that is;

d = mλ/sinθ

We substitute the given values to obtain the grating spacing;

d = (1)(550 nm)/sin 26°

d = 1083 nm (rounded off to the nearest whole number)

Therefore, the grating spacing of the beetle is 1083 nm.

Learn more about first-order maxima:

https://brainly.com/question/13104464

#SPJ11

During a collision with the floor, the velocity of a 0.200-kg ball changes from 28 m/s downward toward the floor to 17 m/s upward away from the wall. If the time the ball was in contact with the floor was 0.075 seconds, what was the magnitude of the average force of impact? Answer in positive newtons.

Answers

The force of impact on average during the collision on the ball is 120N. The force of impact is the force that occurs when two objects collide. It is calculated by multiplying the mass of the object and its acceleration.

The formula for force is: F = ma. Here, m = 0.200 kgV1 = -28 m/sV2 = 17 m/st = 0.075 seconds Initial velocity, u = -28 m/s Final velocity, v = 17 m/s Change in velocity, Δv = v - u = 17 - (-28) = 45 m/s The acceleration during the collision is given bya = Δv/t = 45/0.075 = 600 m/s²To calculate the force of impact, we need to use the formula: F = ma = 0.200 × 600F = 120 N. Therefore, the magnitude of the average force of impact is 120 N.

Learn more about force of impact:

https://brainly.com/question/12912354

#SPJ11

Two horizontal forces, P and Q, are acting on a block that is placed on a table. We know that P is directed to the left but the direction of Q is unknown; it could either be directed to the right or to the left. The object moves along the x-axis. Assume there is no friction between the object and the table. Here P = −8.8 N and the mass of the block is 3.6 kg.
(a)
What is the magnitude and direction of Q (in N) when the block moves with constant velocity? (Indicate the direction with the sign of your answer.)
_________N
(b)
What is the magnitude and direction of Q (in N) when the acceleration of the block is +4.0 m/s2. (Indicate the direction with the sign of your answer.)
_________N
(c)
Find the magnitude and direction of Q (in N) when the acceleration of the block is −4.0 m/s2. (Indicate the direction with the sign of your answer.)
____________N

Answers

a) The block is moving at a constant velocity. Therefore, the net force acting on the block should be equal to zero.

Fnet = P + Q = 0Q = − P = − (− 8.8 N) = 8.8 N

Therefore, the magnitude and direction of Q when the block moves with a constant velocity are 8.8 N to the right. This can be seen in the diagram below:

Therefore, the answer is 8.8 N to the right.

b) The acceleration of the block is 4.0 m/s² and the net force acting on the block is

Fnet = m a

where m is the mass of the block. We can use the following equation to find the magnitude of Q.

Fnet = P + Q = m a

Q = m a − PP

= − 8.8 Nm

= 3.6 kg

Q = (3.6 kg) (4.0 m/s²) − (− 8.8 N)

Q = 14.4 N + 8.8 N

Q = 23.2 N

Therefore, the magnitude and direction of Q when the acceleration of the block is +4.0 m/s² is 23.2 N to the right.

Therefore, the answer is 23.2 N to the right.

c) The acceleration of the block is −4.0 m/s² and the net force acting on the block is

Fnet = m a, where m is the mass of the block. We can use the following equation to find the magnitude of Q

.Fnet = P + Q = m a

Q = m a − PP =

− 8.8 Nm = 3.6 kg

Q = (3.6 kg) (−4.0 m/s²) − (− 8.8 N)

Q = − 14.4 N + 8.8 N

Q = − 5.6 N

Therefore, the magnitude and direction of Q when the acceleration of the block is −4.0 m/s² is 5.6 N to the left.

Therefore, the answer is 5.6 N to the left.

Learn more about constant velocity here

https://brainly.com/question/20215498

#SPJ11

During 9.839.83 s, a motorcyclist changes his velocity from
1,x=−41.1v1,x=−41.1 m/s and 1,y=14.7v1,y=14.7 m/s to
2,x=−23.7v2,x=−23.7 m/s and 2,y=28.9v2,y=28.9 m/s.

Answers

During 9.839.83 s, a motorcyclist changes his velocity from 1,x=−41.1v1,x=−41.1 m/s and 1,y=14.7v1,y=14.7 m/s to 2,x=−23.7v2,x=−23.7 m/s and 2,y=28.9v2,y=28.9 m/s.

During the time interval of 9.83 s, a motorcyclist's velocity changes from (-41.1 m/s, 14.7 m/s) to (-23.7 m/s, 28.9 m/s). The initial velocity of the motorcyclist (v1) is (-41.1 m/s, 14.7 m/s).

The final velocity of the motorcyclist (v2) is (-23.7 m/s, 28.9 m/s).

The magnitude of the change in velocity (|Δv|) can be calculated using the formula:

|Δv| = √[(v2,x - v1,x)² + (v2,y - v1,y)²]

|Δv| = √[(-23.7 - (-41.1))² + (28.9 - 14.7)²]

|Δv|= √[322.56 + 202.5]

|Δv| = √525.06

|Δv| = 22.92 m/s

The direction of the change in velocity (θ) can be calculated using the formula:

θ = tan⁻¹[(v2,y - v1,y) / (v2,x - v1,x)]

θ = tan⁻¹[(28.9 - 14.7) / (-23.7 - (-41.1))]

θ = tan⁻¹[14.2 / 17.4]

θ = 42.1°

The change in velocity is 22.92 m/s in the direction of 42.1°.

Learn more about change in velocity here

https://brainly.com/question/18846105

#SPJ11

A.2.00-nF capacitor with an initial charge of 4.80μC is discharged through a 1.26−kΩ resistor. (a) Calculate the magnitude of the current in the resistor 9.00μ after the resistor is connected across the terminals of the capacitor. mA (b) What charge remains on the capacitor after 8.00…; μC (c) What is the maximum current in the resistor? A

Answers

a)The magnitude of the current in the resistor 9.00μs after connecting it across the terminals of the capacitor is approximately 2.06 mA. b)After 8.00μs, there is no charge remaining on the capacitor. c)The maximum current in the resistor is approximately 3.81 A.

In the given scenario, we have a capacitor with an initial charge of 4.80μC and a capacitance of 2.00 nF. When the resistor is connected across the terminals of the capacitor, the capacitor starts to discharge. To calculate the magnitude of the current in the resistor after 9.00μs, we can use the formula for the discharge of a capacitor in an RC circuit, which states that the current is given by I = (V0 / R) * e^(-t/RC), where V0 is the initial voltage across the capacitor, R is the resistance, t is the time, and C is the capacitance.

Using the given values, we substitute V0 = 4.80μC / 2.00 nF = 2400 V, R = 1.26 kΩ = 1260 Ω, t = 9.00μs, and C = 2.00 nF = 2.00 * 10^(-9) F into the formula. Plugging these values in, we find I = (2400 V / 1260 Ω) * e^(-9.00μs / (1260 Ω * 2.00 * 10^(-9) F)) ≈ 2.06 mA.

After 8.00μs, the charge remaining on the capacitor can be calculated using the formula Q = Q0 * e^(-t/RC), where Q0 is the initial charge on the capacitor. Substituting the given values, we find Q = 4.80μC * e^(-8.00μs / (1260 Ω * 2.00 * 10^(-9) F)) ≈ 0 μC, indicating that no charge remains on the capacitor after 8.00μs.

To find the maximum current in the resistor, we can use Ohm's Law. Since the capacitor is discharged, it acts as a short circuit, and the maximum current flows through the resistor. Using Ohm's Law (I = V / R), we find I = 2400 V / 1260 Ω ≈ 3.81 A as the maximum current in the resistor.

Learn more about current in a resistor:

https://brainly.com/question/32412673

#SPJ11

A pulsed ruby laser emits light at 694,3 nm. For a 13.1-ps pulse containing 3.901 of energy, find the following. (a) the physical length bf the gulse as it travels through space ____________
Your response differs significantly from the cotrect answer. Rework your solution from the begining and check each step carefully. mm (b) the number of photons in it ____________ photons. (c) If the beam has a circular cross section 0.600 cm in diameter, find the number of photons per cubic millimeter. _______________
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step earefully, photons/mm³?

Answers

(a) The physical length of the pulse as it travels through space is 3.933 * 10^-3 m

(b) The number of photons in the pulse is 1.364 * 10^19 photons.

(c) The number of photons per cubic millimeter is 1.004 * 10^18 photons/mm³.

Energy E = 3.901 J

wavelength λ = 694.3 nm

pulse duration t = 13.1 ps

As we know that Speed of light (c) = λ * f

where f is the frequency of light.

So,

Frequency of light f = c/λ

                                 = (3*10^8 m/s) / (694.3*10^-9 m)

                                = 4.32 * 10^14 Hz.

(a)

Now, the physical length of pulse is given as:

L = c*t

  = (3*10^8 m/s) * (13.1 * 10^-12 s)

L = 3.933 * 10^-3 m

So, the physical length of the pulse as it travels through space is 3.933 * 10^-3 m.

(b)

Energy of one photon is given by the Planck's equation

E = hf

where h is the Planck's constant and f is the frequency of light.

Energy of one photon = hf = (6.626 * 10^-34 J*s) * (4.32 * 10^14 Hz)

Energy of one photon = 2.86 * 10^-19 J

Number of photons = Energy / Energy of one photon

Number of photons = 3.901 J / 2.86 * 10^-19 J

Number of photons = 1.364 * 10^19 photons.

So, the number of photons in the pulse is 1.364 * 10^19 photons.

(c)

Area of the circular cross section A = πr²

where r is the radius of the cross section, given by

r = 0.6/2 = 0.3 cm

 = 0.003 m.

A = π(0.003 m)²

A = 2.827 * 10^-5 m²

Volume of the cross section = length * area

                                               = 3.933 * 10^-3 m * 2.827 * 10^-5 m²

                                               = 1.112 * 10^-7 m³

The number of photons per unit volume is given by:

N/V = n/A * λ

      = (1.364 * 10^19 photons) / (1.112 * 10^-7 m³) * (694.3*10^-9 m)

N/V = 1.004 * 10^24 photons/m³.

      = 1.004 * 10^18 photons/mm³.

Therefore, the number of photons per cubic millimeter is 1.004 * 10^18 photons/mm³.

Learn more about the photons:

brainly.com/question/17684922

#SPJ11

A current of 7.17 A in a long, straight wire produces a magnetic field of 3.41μT at a certain distance from the wire. Find this distance. distance:

Answers

A current of 7.17 A in a long, straight wire produces a magnetic field of 3.41μT at a certain distance from the wire.  the distance from the wire at which the magnetic field is 3.41 μT is approximately 0.0942 m, or 9.42 cm.

To determine the distance from the wire at which the magnetic field is 3.41 μT, we can use Ampere's Law, which relates the magnetic field around a current-carrying wire to the current and the distance from the wire.

Ampere's Law states that the magnetic field (B) at a distance (r) from a long, straight wire carrying current (I) is given by the equation:

B = (μ₀ * I) / (2π * r)

where μ₀ is the permeability of free space, which has a value of 4π × 10^(-7) T·m/A.

Rearranging the equation, we can solve for the distance (r):

r = (μ₀ * I) / (2π * B)

Substituting the given values, we have:

r = (4π × 10^(-7) T·m/A * 7.17 A) / (2π * 3.41 × 10^(-6) T)

Simplifying the equation, we find:

r = (4 * 7.17) / (2 * 3.41) × 10^(-7 - (-6)) m

r = 9.42 × 10^(-2) m

Therefore, the distance from the wire at which the magnetic field is 3.41 μT is approximately 0.0942 m, or 9.42 cm.

Learn more about magnetic field here:

https://brainly.com/question/30331791

#SPJ11

A rescue helicopter lifts a 75.3−kg person straight up by means of a cable. The person has an upward acceleration of 0.602 m/s 2
and is lifted from rest through a distance of 12.2 m. Use the work-energy theorem and find the final speed of the person. (Take up positive and down negative) 3.98 m/s 3.28 m/s 5.48 m/s 5.21 m/s 4.51 m/s A 7.05-kg monkey is hanging by one arm from a branch and swinging on a vertical circle. As an approximation, assume a radial distance of 62.1 cm is between the branch and the point where the monkey's mass is located. As the monkey swings through the lowest point on the circle, it has a speed of 3.38 m/s. Find the magnitude of the tension in the monkey's arm. 145.58 N 124.56 N 198.78 N 218.12 N

Answers

The magnitude of the tension in the monkey's arm is 218.12 N. Answer: 218.12 N.

Part AThe weight of the person is the force with which the person is acted upon by gravity. Therefore, the work done by the gravitational force on the person is given by Wg = mghWhere m = 75.3 kg, g = 9.81 m/s², and h = 12.2 mTherefore, Wg = (75.3 kg)(9.81 m/s²)(12.2 m) = 8905.89 JAlso, the work done by the helicopter is given by Wh = (1/2)mv² - (1/2)mu²Where v = final velocity, u = initial velocity, and Wh is the work done by the helicopter on the person since it lifts the person upwards through a distance of 12.2 m.

To obtain the final velocity of the person, we equate Wg to Wh since the net work done on the person is zero. Thus,8905.89 J = (1/2)(75.3 kg)v² - (1/2)(75.3 kg)(0 m/s)²8905.89 J = (1/2)(75.3 kg)v²v² = (2 × 8905.89 J)/(75.3 kg)v² = 236.66v = sqrt(236.66) = 15.38 m/sPart BWhen the monkey is at the lowest point of the circle, the only forces acting on the monkey are the gravitational force and the tension in the arm. The gravitational force acts downwards while the tension in the arm acts upwards.

Therefore, the net force acting on the monkey is the difference between the tension and the gravitational force. This net force causes the monkey to move in a circle of radius 62.1 cm. Thus, the magnitude of the net force can be obtained using the centripetal force equation;Fc = mv²/RFc = (7.05 kg)(3.38 m/s)²/(0.621 m)Fc = 139.28 NSince the net force is the difference between the tension and the gravitational force, we haveT - mg = Fcwhere T is the tension and m is the mass of the monkey.

Therefore, the magnitude of the tension in the monkey's arm can be obtained as;T = Fc + mgT = 139.28 N + (7.05 kg)(9.81 m/s²)T = 218.12 NTherefore, the magnitude of the tension in the monkey's arm is 218.12 N. Answer: 218.12 N.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ11

Each of the following objects gives off light, but the majority of their light is given off in a certain part of the spectrum, according to Wien's Law. What is the wavelength of this peak radiation, and what portion of the spectrum does it cover? • a star at about 30,000 K • the corona of the Sun, at about 2,000,000 K • the surface of our skin, at about 297 K • the Sun, at about 6000K HINT: Problem 3 is a straightforward application of Wien's Law. Use the temperature to compute values of lambda-max, and use the electromagnetic spectrum in your book to determine the wavelength region. Remember that 1 Angstrom = 10⁻¹⁰ meters!

Answers

According to Wien's Law, the star at about 30,000 K emits peak radiation at a wavelength of 96.6 nm, corresponding to the ultraviolet portion of the spectrum. Similarly, the corona of the Sun, with a temperature of about 2,000,000 K, emits peak radiation at 1.45 nm in the extreme ultraviolet region.

Wien's law is a relationship that connects the temperature of an object to the wavelength at which it emits the most intense light. It states that the peak wavelength, known as λmax, is inversely proportional to the temperature of the object.

This law is also referred to as Wien's displacement law or Wien displacement law. By applying Wien's law, we can determine the wavelength of peak radiation and the corresponding portion of the electromagnetic spectrum for different temperatures, such as a star at 30,000 K, the Sun's corona at 2,000,000 K, the surface of our skin at 297 K, and the Sun at 6000 K.

[tex]\[\lambda_{max}=\frac{b}{T}\][/tex] where [tex]\[b=2.898×10^6\][/tex] nm-K.

It signifies that the peak of the blackbody radiation curve for an object of temperature T occurs at a wavelength [tex]\[\lambda_{max}\][/tex]

The wavelength of peak radiation and the spectrum part it covers for each object are given below:

The peak wavelength of light emitted by a star at approximately 30,000 K is:

[tex]\[\lambda_{max}=\frac{b}{T}=\frac{2.898×10^6}{30000}=96.6\][/tex] nm

The spectrum portion covered by this is Ultraviolet.

The corona of the Sun, with a temperature of about 2,000,000 K, emits light with a peak wavelength of:

[tex]\[\lambda_{max}=\frac{b}{T}=\frac{2.898×10^6}{2000000}=1.45\][/tex] nm

The spectrum portion covered by this is X-rays.

At a temperature of around 297 K, the surface of our skin emits light with a peak wavelength:

[tex]\[\lambda_{max}=\frac{b}{T}=\frac{2.898×10^6}{297000}=9.76\][/tex] µm

The spectrum portion covered by this is Far-infrared.

The Sun, with a temperature of about 6000 K, emits light with a peak wavelength of:

[tex]\[\lambda_{max}=\frac{b}{T}=\frac{2.898×10^6}{6000}=483\][/tex] nm

The spectrum portion covered by this is Yellow-green.

Learn more about wavelength at: https://brainly.com/question/24452579

#SPJ11

What is thermal radiation (sometimes called black body radiation)? It is light light absorbed by cool gases. It is light emitted by hot, low density (sparse) gases. It is light emitted from dense forms of matter. Question 30 What is the nature of thermal radiation? It is emitted at discrete wavelengths. It is spread over all wavelengths, but with a peak of intensity at one. It is absorbed at discrete wavelengths. Question 31 What does the Wien Displacement Law (also known as Wien's Law) tell us? There is an inverse relation between the temperature of a thermal emitter and the wavelength where the emission peaks. There is a proportional relation between the temperature of a thermal emitter and the wavelength where the emission peaks. None of the above.

Answers

Thermal radiation (also called black body radiation) is the type of electromagnetic radiation emitted by a heated object. It is light emitted from dense forms of matter and is spread over all wavelengths, but with a peak of intensity at one.

Thermal radiation is an important topic in both the scientific and engineering fields. that it is light emitted from dense forms of matter. Thermal radiation is often referred to as black body radiation because a black body is a theoretical object that absorbs all of the radiation that falls on it. Thermal radiation does not require the presence of a material medium and can pass through a vacuum. It occurs at all wavelengths and is continuous in nature. The Wien Displacement Law, also known as Wien's Law, states that the wavelength of the peak emission from a black body is inversely proportional to the temperature of the object. In other words, there is an inverse relation between the temperature of a thermal emitter and the wavelength where the emission peaks. This law is used to determine the temperature of stars based on their color.

Thermal radiation is emitted from dense forms of matter and is spread over all wavelengths, but with a peak of intensity at one. The Wien Displacement Law tells us that there is an inverse relation between the temperature of a thermal emitter and the wavelength where the emission peaks.

To know more about wavelengths visit:

brainly.com/question/31143857

#SPJ11

A student standing on the top of a cliff shoots an arrow from a height of 30.0 m at 25.0 m/s and an initial angle of 32.0° above the horizontal. Show all your work in calculating the answers to the following 4 questions. What will be the horizontal and vertical components of the arrow's initial speed? How high above the landscape under the cliff will the arrow rise? Assume a level landscape. What will be the vertical and horizontal speeds of the arrow

Answers

Answer:

The vertical speed of the arrow at the highest point is zero, the horizontal speed remains constant at approximately 21.3 m/s, and the arrow reaches a maximum height of approximately 9.26 m above the landscape.

Given:

Initial speed (v) = 25.0 m/s

Launch angle (θ) = 32.0°

Height of the cliff (h) = 30.0 m

The horizontal component of the initial speed (v_horizontal) can be found using trigonometry:

v_horizontal = v * cos(θ)

Substituting the values:

v_horizontal = 25.0 * cos(32.0°)

Calculating:

v_horizontal ≈ 21.3 m/s

The vertical component of the initial speed (v_vertical) can also be found using trigonometry:

v_vertical = v * sin(θ)

Substituting the values:

v_vertical = 25.0 * sin(32.0°)

Calculating:

v_vertical ≈ 13.5 m/s

Therefore, the horizontal component of the arrow's initial speed is approximately 21.3 m/s, and the vertical component is approximately 13.5 m/s.

Question 2: Maximum Height Above the Landscape

To find the maximum height above the landscape that the arrow will reach, we can use the kinematic equation for vertical motion:

Δy = v_vertical^2 / (2 * g)

Where Δy is the change in height, v_vertical is the vertical component of the initial speed, and g is the acceleration due to gravity (approximately 9.8 m/s²).

Substituting the values:

Δy = (13.5^2) / (2 * 9.8)

Calculating:

Δy ≈ 9.26 m

Therefore, the arrow will rise approximately 9.26 m above the landscape.

Question 3: Vertical and Horizontal Speeds of the Arrow

The vertical speed of the arrow at any given time can be determined using the equation:

v_vertical = v_initial * sin(θ) - g * t

Where v_initial is the initial speed, θ is the launch angle, g is the acceleration due to gravity, and t is the time.

At the highest point of the trajectory, the vertical speed becomes zero. We can set v_vertical = 0 and solve for the time t:

0 = v_initial * sin(θ) - g * t

Solving for t:

t = v_initial * sin(θ) / g

Substituting the values:

t = (25.0 * sin(32.0°)) / 9.8

Calculating:

t ≈ 1.34 s

The horizontal speed of the arrow remains constant throughout the motion, assuming no horizontal forces act on it.

Therefore, the horizontal speed (v_horizontal) of the arrow remains the same as the initial horizontal component of the velocity, which is approximately 21.3 m/s.

In summary, the vertical speed of the arrow at the highest point is zero, the horizontal speed remains constant at approximately 21.3 m/s, and the arrow reaches a maximum height of approximately 9.26 m above the landscape.

Learn more about acceleration, here

https://brainly.com/question/460763



#SPJ11

A thermistor has a resistance of 3980 ohms at the ice point and 794 ohms at 50°C. The resistance-temperature relationship is given byRT =a R0 exp (b/T). Calculate the constants a and b. Also calculate the range of resistance to be measured in case the temperature varies from 40 °C to 100 °C.

Answers

The range of resistance to be measured in case the temperature varies from 40 °C to 100 °C is approximately 528.45 Ω to 282.95 Ω.

Given, the resistance of the thermistor at the ice point = R[tex]_{0}[/tex] = 3980 Ω

The resistance of the thermistor at 50°C = RT = 794 Ω

The resistance-temperature relationship is given by RT = a R[tex]_{0}[/tex] exp (b/T)

Taking natural logarithm on both sides, we get

ln R[tex]T[/tex] = ln a + ln R[tex]_{0}[/tex] + (b/T)

For R[tex]T_{1}[/tex] = 3980 Ω and [tex]T_{1}[/tex] = 0°C,

ln R[tex]T_{1}[/tex] = ln a + ln R[tex]_{0}[/tex] + (b/[tex]T_{1}[/tex])    ----(1)

For R[tex]T_{2}[/tex] = 794 Ω and [tex]T_{2}[/tex] = 50°C,

ln R[tex]T_{2}[/tex] = ln a + ln R[tex]_{0}[/tex] + (b/[tex]T_{2}[/tex])    ----(2)

Subtracting (2) from (1), we get

ln R[tex]T_{1}[/tex] - ln R[tex]T_{2}[/tex] = b (1/[tex]T_{1}[/tex] - 1/[tex]T_{2}[/tex])

Simplifying, we get

ln (R[tex]T_{1}[/tex]/R[tex]T_{2}[/tex]) = b (T2 - [tex]T_{1}[/tex])/([tex]T_{1}[/tex] [tex]T_{2}[/tex])

Putting the given values in the above equation, we get

ln (3980/794) = b (50 - 0)/(0 + 50 × 0)

∴ b = [ln (3980/794)] / 50 = 0.02912

Substituting the value of b in equation (1), we get

ln R[tex]T_{1}[/tex] = ln a + ln 3980 + (0.02912/[tex]T_{1}[/tex])

At [tex]T_{1}[/tex] = 0°C, R[tex]T_{1}[/tex] = R[tex]_{0}[/tex] = 3980 Ω

Therefore, we get

ln 3980 = ln a + ln 3980 + (0.02912/0)

∴ ln a = 0

Or, a = 1

Range of resistance to be measured:

Given, temperature varies from 40 °C to 100 °C.

Substituting the values of a, R[tex]_{0}[/tex], and b in the resistance-temperature relationship equation, we get

RT = R0 exp (b/T)

Putting R[tex]_{0}[/tex] = 3980 Ω, a = 1, and b = 0.02912, we get

RT = 3980 exp (0.02912/T)

Therefore, the range of resistance to be measured in case the temperature varies from 40 °C to 100 °C is

R[tex]_{40}[/tex] = 3980 exp [0.02912/40] ΩR[tex]_{100}[/tex] = 3980 exp [0.02912/100] Ω

Hence, the range of resistance to be measured in case the temperature varies from 40 °C to 100 °C is approximately 528.45 Ω to 282.95 Ω.

learn more about thermistor here:

https://brainly.com/question/31586991

#SPJ11

Distance Conversion, Light Years to Kilometers (Parallel B) Express the answer in scientific notation. A star is 9.6 light-years (ly) away from Earth. What is this distance in kilometers? d=×10 km

Answers

The distance from Earth to the star is approximately 9.07584 × 10^13 kilometers.

One light-year is the distance that light travels in one year. To convert light-years to kilometers, we need to multiply the given distance in light-years by the conversion factor, which is the distance traveled by light in one year. The speed of light is approximately 299,792 kilometers per second, and there are 31,536,000 seconds in a year (assuming a non-leap year).

So, the conversion factor is:

1 light-year = (299,792 km/s) * (31,536,000 s/year)

To find the distance in kilometers, we multiply the given distance of 9.6 light-years by the conversion factor:

d = 9.6 light-years * (299,792 km/s) * (31,536,000 s/year)

Calculating the above expression, we find that the distance is approximately 9.07584 × 10^13 kilometers.

Learn more about light-year here:

https://brainly.com/question/14534942

#SPJ11  

Perform the following calculation and express your answer using the correct number of significant digits. If a wagon with mass 13.9 kg accelerates at a rate of 0.0360 m/s2, what is the force on the wagon in N?

Answers

The force on the wagon is F = 0.500 N (correct to three significant digits).Note: In scientific notation, the answer can be written as F = 5.00 × 10⁻¹ N (correct to three significant digits).

Given information:Mass of the wagon (m) = 13.9 kgAcceleration (a) = 0.0360 m/s²To find:Force (F) = ?Formula:F = ma,whereF = Force (N)m = Mass (kg)a = Acceleration (m/s²)Substituting the given values in the above formula:F = ma = 13.9 kg × 0.0360 m/s² = 0.5004 NIt is important to express the answer using the correct number of significant digits. In this case, the acceleration has four significant digits and the mass has three significant digits. So, the answer must have three significant digits.Therefore, the force on the wagon is F = 0.500 N (correct to three significant digits).Note: In scientific notation, the answer can be written as F = 5.00 × 10⁻¹ N (correct to three significant digits).

Learn more about Acceleration here,

https://brainly.com/question/460763

#SPJ11

Two boxes (mA = 1.5 kg and mB = 3.2 kg) are in contact and accelerated across the floor by a force F = 12.5 N. The frictional force between mA and the floor is 2.0 N and the frictional force between mв and the floor is 4.0 N. (a) Draw a sketch of this situation. (b) Separate to your sketch; draw a Free Body diagram for each mass. (c) Determine the magnitude of the force exerted on mв by ma.

Answers

In a system where two boxes, mA (1.5 kg) and mB (3.2 kg), are in contact and accelerated by a force of 12.5 N, the magnitude of the force exerted on mB by mA is 9.5 N.

(a) The sketch of the situation would show two boxes in contact, mA and mB, placed on a horizontal floor. An external force, F = 12.5 N, is applied to the system to accelerate the boxes.

(b) For each mass, the Free Body Diagram (FBD) would depict the forces acting on them. For mA, the forces include the force of gravity (mg) acting downwards, the normal force (N) exerted by the floor upwards, and the frictional force (fA) opposing the motion.

For mB, the forces include the force of gravity (mg) acting downwards, the normal force (N) exerted by the floor upwards, and the frictional force (fB) opposing the motion.

(c) To determine the magnitude of the force exerted on mB by mA, we need to consider the net force acting on the system. Since the boxes are in contact and accelerated together, the net force on both boxes is equal to the applied force (F) minus the sum of the frictional forces (fA + fB).

Therefore, the net force on the system is 12.5 N - (2.0 N + 4.0 N) = 6.5 N. Since the boxes are in contact, the force exerted by mA on mB is equal in magnitude but opposite in direction to the force exerted by mB on mA. Thus, the magnitude of the force exerted on mB by mA is 6.5 N.

Free body diagram is given below.

Learn more about Free Body Diagram here:

https://brainly.com/question/10148657

#SPJ11

Explain how a glass ball would actually bounce back up higher than a rubber ball when dropped at the same height. Assume that the glass ball is resistant enough not to break or shatter.

Answers

A glass ball would actually bounce back up higher than a rubber ball when dropped at the same height due to the difference in its elasticity properties.

When an object is dropped, its potential energy is converted into kinetic energy as it falls toward the ground. Once the object hits the ground, the kinetic energy is transferred back into potential energy and the object bounces back up.

What determines how high an object will bounce back up after hitting the ground is the object's coefficient of restitution (COR). The coefficient of restitution is a measure of how much of the kinetic energy is retained by the object after a collision.

In other words, it determines the elasticity of the object. The COR of a glass ball is greater than that of a rubber ball. This means that a glass ball is more elastic than a rubber ball. When the glass ball hits the ground, more of the kinetic energy is retained and converted back into potential energy, causing it to bounce back up higher than the rubber ball would have.

Based on this explanation, the glass ball has a higher potential energy than the rubber ball. So, it can be concluded that a glass ball will bounce back up higher than a rubber ball when dropped from the same height.

To learn about kinetic energy here:

https://brainly.com/question/8101588

#SPJ11

A ray of of light in air is incident on a surface that partially reflected and partially refracted at a boundary between air and a liquid having an index refraction of 1.46. The wavelength of the light ray traveling is 401 nm. You must show the steps and formula below. Solve for - The wavelength of the refracted light. - The speed of the light when propagating in the liquid. - At an angle of 30deg for the incidence of the light ray, the angle of refraction. BONUS Solve for the smallest angle of incidence (for the exact purpose of the ray undergoing total internal refraction) for a second ray traveling in the liquid in the opposite direction on the provided surface (water/air interface).

Answers

To solve the given problem, we can use Snell's law and the formula for the critical angle. By applying these formulas, we can determine the wavelength of the refracted light, the speed of light in the liquid, the angle of refraction for a given angle of incidence, and the smallest angle of incidence for total internal refraction.

The wavelength of the refracted light: Snell's law relates the indices of refraction and the angles of incidence and refraction. It can be written as [tex]n1sin(theta1) = n2sin(theta2)[/tex], where n1 and n2 are the refractive indices and theta1 and theta2 are the angles of incidence and refraction, respectively. Rearranging the equation, we can solve for the sine of the angle of refraction: [tex]sin(theta2) = (n1/n2)*sin(theta1)[/tex]. Substituting the given values, we find sin(theta2) = (1/1.46)*sin(30°). From the calculated value of sin(theta2), we can determine the corresponding angle and use it to find the wavelength of the refracted light using the formula: [tex]wavelength2 = wavelength1 * (speed1/speed2)[/tex], where wavelength1 is the initial wavelength, and speed1 and speed2 are the speeds of light in air and the liquid, respectively.

Speed of light in the liquid: The speed of light in a medium is related to the refractive index by the formula: [tex]speed = c/n[/tex], where c is the speed of light in vacuum and n is the refractive index. Substituting the given refractive index, we can calculate the speed of light in the liquid.

The angle of refraction for an angle of incidence: Using Snell's law, we can calculate the angle of refraction for a given angle of incidence. Substituting the values into the equation, we find [tex]sin(theta2) = (1/1.46)*sin(30^o)[/tex], and then we can determine the corresponding angle.

The smallest angle of incidence for total internal refraction: The critical angle is the angle of incidence that results in the refracted angle being 90°. It can be found using the formula: [tex]critical angle = arcsin(n2/n1)[/tex], where n1 and n2 are the refractive indices of the two mediums. Substituting the values, we can calculate the critical angle, which represents the smallest angle of incidence for total internal refraction.

By applying these formulas, we can determine the wavelength of the refracted light, the speed of light in the liquid, the angle of refraction for a given angle of incidence, and the smallest angle of incidence for total internal refraction.

Learn more about refraction here:

https://brainly.com/question/14760207

#SPJ11

it is difficult to see the roadway when driving on a rainy night mainly because
a. light scatters from raindrops and reduces the amount of light reaching your eyes
b. of additional condensation on the inner surface of the windshield
c. the film of water on the roadway makes the road less diffuse
d. the film of water on your windshield provides an additional reflecting surface

Answers

It is difficult to see the roadway when driving on a rainy night mainly because light scatters from raindrops and reduces the amount of light reaching your eyes, option a.

When light interacts with raindrops, it causes the light to scatter in different directions, and this can be a major problem when driving at night especially during heavy rainfalls. This can lead to reduced visibility and can make it difficult to see the roadway.

An explanation of the other options:

b. Incorrect: Additional condensation on the inner surface of the windshield can also lead to reduced visibility but it is not the main cause of the problem.

c. Incorrect: The film of water on the roadway can also make the road less diffuse but it is not the main cause of the problem.

d. Incorrect: The film of water on your windshield provides an additional reflecting surface which can lead to reduced visibility but it is not the main cause of the problem.

Learn more about scatter:

https://brainly.com/question/7563617

#SPJ11

Li-Air Battery's Biggest Advantage? Please explain the
reason why the voltage is much higher than the discharge voltage
when charging with the reaction formula.

Answers

The Li-Air battery is a type of rechargeable battery that is currently under development for energy storage applications. The biggest advantage of Li-Air batteries is their high energy density, which means that they can store more energy per unit mass than most other types of batteries.

This makes them particularly attractive for applications where weight and volume are critical factors, such as in electric vehicles and portable electronic devices.

When charging a Li-Air battery, the voltage is much higher than the discharge voltage due to the reaction formula. During charging, lithium ions are extracted from the lithium anode and transported through the electrolyte to the cathode, where they react with oxygen molecules from the air to form lithium peroxide. This reaction is highly exothermic and releases a large amount of energy, which is used to drive the charging process.

The reason why the voltage is much higher during charging is because the charging process requires a large amount of energy to drive the reaction in the reverse direction, i.e. to convert lithium peroxide back into lithium ions and oxygen molecules. This energy is supplied by the charging current, which drives the reaction forward and raises the voltage of the battery. The higher voltage during charging is therefore a reflection of the energy required to drive the reaction in the opposite direction, and is a key feature of Li-Air batteries.

To know more about lead-acid battery visit:

https://brainly.com/question/31355302

#SPJ11

1 (c) Water with a kinematic viscosity of v= 1.053 x 106 m² s¹ and velocity of v = 2.5 m s¹ flows across a flat plate with a surface roughness of ε = 0.046 mm. Would the fluid boundary layer at a distance of x = 0.5 m from the leading edge be less than that of the surface roughness? How would this affect the head loss across the plate? Show with suitable calculations your reasoning.

Answers

The fluid boundary layer at a distance of 0.5 m from the leading edge would be larger than the surface roughness. This is because the boundary layer thickness increases as the fluid flows further along the flat plate. The head loss across the plate would be affected by this larger boundary layer, potentially leading to increased resistance and higher pressure drop.

The head loss across the plate would be very small, since the fluid flow is still laminar and the boundary layer thickness is much smaller than the surface roughness. The head loss is dominated by the viscous effects in the fluid, and can be neglected for most practical purposes.

The fluid boundary layer is defined as the thin layer of fluid adjacent to the solid surface of an object, such as a flat plate, where the flow is influenced by the viscosity of the fluid. The thickness of this boundary layer increases with the distance from the leading edge of the plate. To determine if the fluid boundary layer at a distance of x = 0.5 m from the leading edge would be less than that of the surface roughness, we need to calculate the thickness of the boundary layer and compare it to the surface roughness. We can use the formula for the boundary layer thickness for laminar flow over a flat plate, given byδ = 5.0x / (Re_x^(1/2)), where δ is the boundary layer thickness, x is the distance from the leading edge of the plate, and Re_x is the Reynolds number at the point x.

The Reynolds number is defined as Re_x = (ρv x) / μwhere ρ is the density of the fluid, v is the velocity of the fluid, x is the distance from the leading edge of the plate, and μ is the dynamic viscosity of the fluid. Substituting the given values, we get Re_x = (ρv x) / μ = (1000 kg/m³ x 2.5 m/s x 0.5 m) / 1.053 x 10^(-6) m²/s = 1.185 x 10^9Using this value of Re_x in the formula for the boundary layer thickness, we getδ = 5.0x / (Re_x^(1/2)) = 5.0 x 0.5 / (1.185 x 10^9)^(1/2) = 1.24 x 10^(-6) m. Therefore, the fluid boundary layer thickness at a distance of x = 0.5 m from the leading edge of the plate is much smaller than the surface roughness of ε = 0.046 mm.

This means that the fluid flow over the plate is still considered to be laminar, and the head loss across the plate can be calculated using the formula for the Darcy- Weisbach friction factor,f_D = 16 / Re_xwhere f_D is the friction factor. The head loss is then given byh_L = f_D (L/D) (v²/2g)where L is the length of the plate, D is the hydraulic diameter of the flow channel, v is the velocity of the fluid, and g is the acceleration due to gravity.

Since the flow is laminar, the friction factor can be calculated using the formula, f_D = 64 / Re_x Substituting the given values, we get, Re_x = 1.185 x 10^9 and D = 4ε = 0.184 mm = 1.84 x 10^(-4) m. Therefore,f_D = 64 / Re_x = 64 / 1.185 x 10^9 = 5.4 x 10^(-8)and h_L = f_D (L/D) (v²/2g) = (5.4 x 10^(-8)) x (1 m / 1.84 x 10^(-4) m) x (2.5 m/s)² / (2 x 9.81 m/s²) = 7.0 x 10^(-6) m.

Therefore, the head loss across the plate would be very small, since the fluid flow is still laminar and the boundary layer thickness is much smaller than the surface roughness. The head loss is dominated by the viscous effects in the fluid, and can be neglected for most practical purposes.

To know more about fluid click here:

https://brainly.com/question/13385620

#SPJ11

The electric potential in a certain region is given by V = 4xy - 5z + x2 (in volts). Calculate the magnitude of the electric field at (+3, +2, -1) (all distances measured in meters)

Answers

To calculate the magnitude of the electric field at a specific point (+3, +2, -1) in a region with a given electric potential V,

We need to determine the gradient of the electric potential function and evaluate it at the given point. The magnitude of the electric field is equal to the magnitude of the negative gradient of the electric potential.

The gradient of the electric potential function V is given by the vector (∂V/∂x, ∂V/∂y, ∂V/∂z). By taking the partial derivatives of V with respect to each coordinate, we can obtain the components of the electric field vector. The magnitude of the electric field at the point (+3, +2, -1) is the magnitude of this vector. Evaluate the partial derivatives of V with respect to x, y, and z, and then substitute the values x = 3, y = 2, and z = -1 into these expressions. Finally, calculate the magnitude of the resulting electric field vector.

Learn more about the electric potential here:

https://brainly.com/question/28444459

#SPJ11

A proton moving perpendicular to a magnetic field of 9.80e-6 T follows a circular path of radius 4.95 cm. What is the proton's speed? Please give answer in m/s.
If the magnetic field in the previous question is pointed into the page and the proton is moving to the left when it enters the region of the magnetic field, the proton goes in what direction as viewed from above?

Answers

The speed of the proton is approximately 2.80 x 10^6 m/s. Regarding the direction of the proton's motion as viewed from above, since the magnetic field is pointed into the page and the proton is moving to the left when it enters the region of the magnetic field, the proton will move clockwise in the circular path as viewed from above.

To find the proton's speed, we can use the equation for the centripetal force acting on a charged particle moving in a magnetic field:

F = q * v * B

where:

F is the centripetal force,

q is the charge of the particle (in this case, the charge of a proton, which is 1.6 x 10^-19 C),

v is the velocity of the proton, and

B is the magnetic field strength.

The centripetal force is provided by the magnetic force, so we can equate the two:

F = m * a = (m * v^2) / r

where:

m is the mass of the proton (approximately 1.67 x 10^-27 kg),

a is the acceleration,

v is the velocity of the proton, and

r is the radius of the circular path.

Equating the two forces, we have:

q * v * B = (m * v^2) / r

We can rearrange this equation to solve for the velocity v:

v = (q * B * r) / m

Now we can substitute the given values:

q = 1.6 x 10^-19 C

B = 9.80 x 10^-6 T

r = 4.95 cm = 4.95 x 10^-2 m

m = 1.67 x 10^-27 kg

v = (1.6 x 10^-19 C * 9.80 x 10^-6 T * 4.95 x 10^-2 m) / (1.67 x 10^-27 kg)

Calculating this expression:

v ≈ 2.80 x 10^6 m/s

To know more about proton

https://brainly.com/question/29248303

#SPJ11

Two slits are separated by a distance of 0.067 mm. A monochromatic beam of light with a
wavelength of 555 nm falls on the slits and produces an interference pattern on a screen that is 3.05 m from the slits. Calculate the fringe separation between the 2nd left and 3rd right nodal lines.

Answers

To calculate the fringe separation between the 2nd left and 3rd right nodal lines in the interference pattern, we need to determine the distance between these two nodal lines.

The formula to calculate the fringe separation in Young's double-slit experiment is given by:

fringe separation (Δy) = (λ * D) / d

where:
λ is the wavelength of the light (in meters)
D is the distance between the screen and the slits (in meters)
d is the distance between the two slits (in meters)

Let's convert the given values to the correct units:

λ = 555 nm = 555 * 10^(-9) m
D = 3.05 m
d = 0.067 mm = 0.067 * 10^(-3) m

Now we can calculate the fringe separation:

Δy = (λ * D) / d
= (555 * 10^(-9) * 3.05) / (0.067 * 10^(-3))
≈ 2.525 meters

Therefore, the fringe separation between the 2nd left and 3rd right nodal lines is approximately 2.525 meters.

a) A flat roof is very susceptible to wind damage during a thunderstorm and/or tornado. If a flat roof has an area of 780 m2 and winds of speed 41.0 m/s blow across it, determine the magnitude of the force exerted on the roof. The density of air is 1.29 kg/m3.
N
(b) As a result of the wind, the force exerted on the roof is which of the following?
upward
downward

Answers

During a thunderstorm or tornado, a flat roof with an area of 780 m2 is at risk of wind damage.  The magnitude of the force exerted on the roof is 679,024.7 N. The force exerted on the roof is  in the downward direction.

To calculate the force exerted on the flat roof, we need to determine the wind pressure first. Wind pressure can be calculated using the equation: [tex]Pressure = 0.5 * density * velocity^2[/tex], where the density of air is given as [tex]1.29 kg/m^3[/tex] and the velocity is 41.0 m/s. Plugging in these values, we find the wind pressure to be approximately 872.485 Pa.

Next, we can calculate the force exerted on the roof by multiplying the wind pressure by the area of the roof. The area of the roof is given as [tex]780 m^2[/tex]. Therefore, the force exerted on the roof can be calculated as: Force = Pressure * Area. Substituting the values, we get: Force = [tex]872.485 Pa * 780 m^2 = 679,024.7 N[/tex].

The force exerted on the flat roof during the thunderstorm/tornado is downward since the wind blows across the roof and exerts a pressure on it in the downward direction. Therefore, the correct answer is (b) downward.

Learn more about force here:

https://brainly.com/question/30507236

#SPJ11

Why are thire only large impact craters on Venus?
A. There are only large impact craters on Venus because only large meteors and asteroids survive their fall through the planet's thick and corrosive atmosphere.
B. There are only large impact craters on Venus because geological activity erodes impact craters over time.
C. There are only large impact craters on Venus because most smaller asteroids and meteors have been cleared out of the inner solar system over the last few billion years.
D. There are only large impact craters on Venus because the weather on the planet erodes impact craters over time.
E. There are actually impact craters of all sizes on the surface of Venus.

Answers

Venus has large impact craters due to the absence of erosive forces and the survival of only the largest meteors and asteroids through its thick atmosphere.

Option (A) is correct.

Venus, known as the sister planet of Earth, is characterized by its thick, corrosive atmosphere and extreme temperatures. Its surface lacks water and volcanic activity, and is instead marked by numerous large impact craters. This is due to the absence of erosive forces, like water, which would have gradually eroded the craters over billions of years. The craters formed on Venus as a result of asteroid and comet impacts over the past 4.6 billion years. However, the impact process on Venus differs from that on Earth. Venus' thick atmosphere burns up most smaller meteorites and asteroids upon entry, allowing only the largest ones to survive their descent. Consequently, only the large impact craters remain visible on the planet's surface today. Therefore, option (A) is correct. In summary, Venus bears only large impact craters as a consequence of the survival of substantial meteors and asteroids through its thick and corrosive atmosphere.

Learn more about erosive forces

https://brainly.com/question/12976130

#SPJ11

An electron follows a helical path in a uniform magnetic field of magnitude 0.244 T. The pitch of the path is 7.47μm, and the magnitude of the magnetic force on the electron is 2.05×10−15 N. What is the electron's speed? Number Units

Answers

The speed of the electron is 6.57 × 10⁷ m/s.

The magnetic force on an electron in a magnetic field moving in a helical path is given by: Fm = evB, where e is the charge of an electron, v is the velocity of the electron, and B is the magnetic field strength.The pitch of the path, p, is defined as the distance traveled along the axis of the helix for one complete turn of the helix.

So the pitch of the path can be represented by:p = (v/ω), where ω is the angular velocity.The magnetic force is also equal to: Fm = mv²/r, where m is the mass of the electron, v is its velocity, and r is the radius of curvature of the helix.

For a helix, the radius of curvature, r, is given by: r = p/2πSo we have: mv²/r = evBv = eBr/mUsing the given values:Charge on an electron, e = 1.6 × 10⁻¹⁹ C;Magnetic field strength, B = 0.244 T;Pitch of the path, p = 7.47 μm = 7.47 × 10⁻⁶ mWe can determine the radius of curvature: r = p/2π= 7.47 × 10⁻⁶ m / (2π) = 1.19 × 10⁻⁶ mThe magnetic force, Fm = 2.05 × 10⁻¹⁵ N;Mass of an electron, m = 9.1 × 10⁻³¹ kgSubstituting the values into v = eBr/m:v = (1.6 × 10⁻¹⁹ C) × (0.244 T) × (1.19 × 10⁻⁶ m) / (9.1 × 10⁻³¹ kg)= 6.57 × 10⁷ m/sSo, the speed of the electron is 6.57 × 10⁷ m/s.

Learn more about electron here,

https://brainly.com/question/371590

#SPJ11

Other Questions
Write a function called pickOne that receives a row vector as argument and returns one random element from the vector. Run the function and test it using the following examples: pickOne (1:8) pickOne([1 8 9 2 0 12]) Upload your function to canvas. *1. Mr Ashraf is ..... man that you can trust him*A. such a B. such an c. such the d. so 2. Mr **Ashraf is ..... man that you can trust.**A. such B. such an C. so D. such the how did Malcolm X's plan to bring the case of African Americans to the united nations (the world court) reflect his goal of building a multi-racial coalition to challenge white supremacy on a global level? Improving Communication at Oakdale Hospital Businesspeople frequently work with large data sets that require them to determine how they will integrate all of that data into their communication in the form of visuals. This exercise will help you think through the process of planning for and integrating visuals from a large data set into a report. Analyzing this case requires an understanding of the various steps in the visual communication process. -Planning -Gathering and collecting -Analyzing and organizing -Choosing a form -Placing and interpreting -Evaluating Read the following business scenario and answer the questions that follow. You work for Oakdale Regional Hospital. Oakdale serves a metropolitan area of approximately 100,000 people and has 15 satellite clinics in rural communities throughout the region. Recently, Oakdale hired a new CEO, Ramona Jackson, who wants to gain a better understanding of Oakdale's culture, its reputation among the people and community it serves, and how Oakdale accomplishes its mission. She charged a team with surveying employees, patients, vendors, and community members to assess their perceptions of Oakdale. She wants the survey results presented in a written report, which she plans to make public. You are a member of the team responsible for conducting surveys and writing the report. To get the best data possible, your team sent four different surveys (one each to employees, patients, vendors, and community members) to accommodate each group's relationship with Oakdale. The questions included yes/no questions and questions in which respondents rated items on a scale of 1 to 5. The purpose of these questions was to get quick, quantifiable, statistical data that would be represented well in quantitative visuals (e.g., charts and graphs). You also asked several open-ended questions that allowed respondents to share their thoughts and opinions. Even though this type of information does not lend itself well to quantitative visuals, you know that it can lend itself to some text-based visuals. The survey results are in. Each member of the team is assigned to write a section of the report, but even with the division of labor, the amount of data each person is working with is staggering. Because of your excellent analytical and communication skills, your team members have asked you to guide them in their use of visuals for their sections of the report. As your team members work on their individual sections of the report, they have several questions that you need to answer. A team member wants to know which type of visual would work best to compare responses from patients and responses from employees on a question regarding safety at Oakdale. To answer the question, respondents rated their answers on a scale of 1-5. What would you tell your teammate? Multiple Choice Don't use any visual use text when showing comparisons Use a bar or column chart Use a diagram Use a line graph Useflowchart Many team members have asked you about the best way to incorporate visuals into the report. Which of the following is sound advice? Multiple Choice Start with a summary statement that introduces the visual, present the visual, and then call your reader's attention to specific points. Avoid signal phrases such as "As Table 1 shows..." Call your reader's attention to specific points in the visual, but do not include any kind of summary statement. O Don't use the text to provide examples that call your audience's attention to findings; the visual should do this. Don't discuss exceptions to the idea conveyed in the visual, this will make your visual less credible. You decide to make a checklist to ensure that everyone's visuals are as clear as possible. Your checklist should include all except which of the following? Multiple Choice O Have I used at least one visual for the data from every survey question? Am I using the right chart type for my purpose? Are the grids, shading, and background helpful and not distracting? is the typeface appropriate? Are the labels clear? From the sitcom "Everybody Loves Raymond," Debra and Raymond provide a comedic, yet real, portrayal of marital tensions. Take notice of the communication dynamics; not so much the presenting issue. Answer the following questions: 1. How did "Raymond" contribute to the tension of the moment and how could he have helped reduce some of the tension? 2. How did "Debra" contribute to the tension of the moment and how could she have helped reduce some of the tension? In 150 to 250 words (total for both questions) provide your answers to these questions along with any personal insights into the subject Discuss the followings: The emergence and development of Rail Transportation in PakistanThe functions and responsibilities of Pakistan Railway The important networks and routes of Pakistan RailwayThe crises of Rail Transportation in Pakistan & their solutions How can a prototype reduce costs and risks? Is it always true, especially for a software or an IT product? Could you elaborate your answer with logical examples? What steps should be taken, if any, to ensure social responsibility in the marketing of tobacco and alcohol in developing economies? 2A. Predict the change in entropy for the following: i) Carbon dioxide sublimes ii) Hydroiodic acid and Sodium Hydroxide are neutralized iii) Neon gas is liquefied under pressure. The following case study illustrates the procedure that should be followed to obtain the settings of a distance relay. Determining the settings is a well-defined process, provided that the criteria are correctly applied, but the actual implementation will vary, depending not only on each relay manufacturer but also on each type of relay. For the case study, consider a distance relay installed at the Pance substation in the circuit to Juanchito substation in the system shown diagrammatically in Figure 1.1, which provides a schematic diagram of the impedances as seen by the relay. The numbers against each busbar correspond to those used in the short-circuit study, and shown in Figure 1.2. The CT and VT transformation ratios are 600/5 and 1000/1 respectively. Leslie is considered renting a car for the weekend. The weekend daily rate is $24.99. If she plans on picking up the car on Friday morning and returning it Sunday evening, how much will the rental cost her? (c) The switch in the circuit in Figure Q3(c) has been closed for a long time. It is opened at t=0. Find the capacitor voltage v(t) for t>0. (10 marks) Figure Q3(c) A report in Planet Money estimates that the cost of saving a job through higher tariffs on steel imports imposed by Trump isA. $1,250 per yearB. $98,750 per yearC. $525,000 per yearD. $815,000 per year. 20. If the market does not have enough goods to meet the demand, it causes a/anO equilibriumshortagesurplusdisequilibrium The distance that a car (undergoing constant acceleration) will travel is given by the expression below where S=distance traveled, V-initial velocity, t-time travelled, and a acceleration. S = V1 + = at (a) Write a function that reads value for initial velocity, time travelled, and acceleration. (b) Write a function that computes the distance traveled where the values of V, t and a are the parameters. (c) Write a function that displays the result. (d) Write a main function to test the functions you wrote in part (a), (b) and (c). It calls the function to ask the user for values of V, t, and a, calls the function to compute the distance travelled and calls the function to display the result. Write an introduction and a conclusion about the impact of covid19 on social life like behavior, mental health ... etcat least 500 words The price elasticity of demand for a monopolist's product is 0.7. Advise the firm on its pricing strategy. b) A firm sells two products: A and B. Product A has an income elasticity of demand of +1.3 and product B has an income elasticity of 1.4. Advise this firm on how it might plan its production in the coming year if real consumer incomes are set to rise by 12%. c) A firm sells two products: C and D. C has a cross elasticity of demand with another firm's product (product E ) of +0.8 whilst D has a cross elasticity of demand with another firm's product (product F) of 1.9. Advise the firm on how its sales would be affected by a fall in the price of the other firms' products of 25%. Question 2 a) Distinguish between price elasticity of demand, income elasticity of demand and cross elasticity of demand. b) Explain the relationship between price elasticity of demand and total revenue or total expenditure. Delta Company is considering setting up a new division with an estimated divisional profit of $98,000 per year and a divisional investment of $1,000,000. The required rate of return is 10%. Calculate the performance measures Return on Investment (ROI) and Residual Income (RI) based on the above information. On the basis of your calculations, should Delta Company go ahead and set up the new division? Explain why or why not. A flexible container has 4 moles of gas at constant pressure and temperature. Thereafter, the moles of gas are increased to 8 . By what factor will the volume increase? Enter a number rounded to the nearest hundredth. If there is no change to the volume, enter a1 80 points easy 1 quest! Which of the following is NOT a quality of a symbol?Question 18 options:The meaning of a symbol must suggest more than the representative of a class or type.The story furnishes a clue that a detail is to be taken symbolically.The meaning of the symbol is supported by the entire story.A symbol can only have one meaning.