A particle is moving along a circle of radius r such that it complete 1 rev in 40 sec. What will be the displacement after 2 mint 20sec?

Answers

Answer 1

The displacement of the particle after 2 minutes 20 seconds cannot be determined without knowing the radius of the circle.

To find the displacement of a particle moving along a circle, we need to determine the angle it has covered in a given time.

Given:

Time taken to complete one revolution (T) = 40 seconds

Radius of the circle (r) = r (not provided)

Time for which we need to find the displacement (t) = 2 minutes 20 seconds = 2 * 60 + 20 = 140 seconds

To find the displacement after 2 minutes 20 seconds, we need to calculate the angle covered by the particle during this time.

One revolution (360 degrees) is completed in T seconds. Therefore, the angle covered in 140 seconds can be calculated as follows:

Angle covered = (Angle covered in one revolution) * (Number of revolutions)

Angle covered = (360 degrees) * (Number of revolutions)

To find the number of revolutions in 140 seconds, we can divide 140 by the time taken for one revolution (40 seconds):

Number of revolutions = 140 / 40 = 3.5

Substituting this value into the equation for the angle covered:

Angle covered = (360 degrees) * (3.5) = 1260 degrees

Now, the displacement of the particle can be found using the formula:

Displacement = 2 * pi * r * (Angle covered / 360 degrees)

Learn more about Displacement here :-

https://brainly.com/question/11934397

#SPJ11


Related Questions

An inductor in the form of a solenoid contains 400 turns and is 15.4 cm in length. A uniform rate of decrease of current through the inductor of 0.421 A/s induces an emf of 175 PV. What is the radius of the solenoid? mm

Answers

Given: Number of turns (N) = 400, Length of solenoid (l) = 15.4 cm = 0.154 m, Rate of change of current (dI/dt) = 0.421 A/s, Induced emf (emf) = 175 PV = 175 * 10^(-12) V.

Using the formula L = (μ₀ * N² * A) / l . We can solve for the radius (R) using the formula for the cross-sectional area (A) of a solenoid:

R = √(A / π)  the radius of the solenoid is approximately 0.318 mm.

To find the radius of the solenoid, we can use the formula for the self-induced emf in an inductor:

emf = -L * (dI/dt)

Where: emf is the induced electromotive force (in volts),

           L is the self-inductance of the solenoid (in henries),

          dI/dt is the rate of change of current through the inductor (in            amperes per second).

We are given:

emf = 175 PV (pico-volts) = 175 * 10⁻¹² V,

dI/dt = 0.421 A/s,

Number of turns, N = 400,

Length of solenoid, l = 15.4 cm = 0.154 m.

Now, let's calculate the self-inductance L:

emf = -L * (dI/dt)

175 * 10⁻¹² V = -L * 0.421 A/s

L = (175 * 10⁻¹² V) / (0.421 A/s)

L = 4.15 * 10⁻¹⁰ H

The self-inductance of the solenoid is 4.15 * 10⁻¹⁰ H.

The self-inductance of a solenoid is given by the formula:

L = (μ₀ * N² * A) / l

Where:

μ₀ is the permeability of free space (μ₀ = 4π * 10⁻⁷ T·m/A),

N is the number of turns,

A is the cross-sectional area of the solenoid (in square meters),

l is the length of the solenoid (in meters).

We need to solve this equation for the radius, R, of the solenoid.

Let's rearrange the formula for self-inductance to solve for A:

L = (μ₀ * N² * A) / l

A = (L * l) / (μ₀ * N²)

Now, let's substitute the given values and calculate the cross-sectional area, A:

A = (4.15 * 10⁻¹⁰ H * 0.154 m) / (4π * 10⁻⁷ T·m/A * (400)^2)

A ≈ 4.01 * 10⁻⁸ m²

The cross-sectional area of the solenoid is approximately 4.01 * 10⁻⁸ m².

The cross-sectional area of a solenoid is given by the formula:

A = π * R²

We can solve this equation for the radius, R, of the solenoid:

R = √(A / π)

Let's calculate the radius using the previously calculated cross-sectional area, A:

R = √(4.01 * 10⁻⁸ m² / π)

R ≈ 3.18 * 10⁻⁴  m

To convert the radius to millimeters, multiply by 1000:

Radius = 3.18 * 10⁻⁴ m * 1000

Radius ≈ 0.318 mm

The radius of the solenoid is approximately 0.318 mm.

Learn more about solenoid here

https://brainly.com/question/15504705

#SPJ11

The simulation does not provide an ohmmeter to measure resistance. This is unimportant for individual resistors because you can click on a resistor to find its resistance. But an ohmmeter would help you verify your rule for the equivalent resistance of a group of resistors in parallel (procedure 5 in the Resistance section above). Since you have no ohmmeter, use Ohm's law to verify your rule for resistors in parallel.

Answers

Ohm's law can be used to verify our rule for resistors in parallel.

How to verify with Ohm's law?

Recall that the rule for resistors in parallel is that the equivalent resistance is equal to the reciprocal of the sum of the reciprocals of the individual resistances.

For example, if there are two resistors in parallel, R₁ and R₂, the equivalent resistance is:

R_eq = 1 / (1/R₁ + 1/R₂)

Verify this rule using Ohm's law.

V = IR

where V is the voltage, I is the current, and R is the resistance.

If a voltage source V connected to two resistors in parallel, R1 and R₂, the current through each resistor will be:

I₁ = V / R₁

I₂ = V / R₂

The total current through the circuit will be the sum of the currents through each resistor:

I_total = I₁ + I₂

Substituting the equations for I₁ and I₂, get the following equation:

I_total = V / R₁ + V / R₂

Rearrange this equation to get the following equation for the equivalent resistance:

R_eq = V / I_total = 1 / (1/R₁ + 1/R₂)

This is the same equation for the equivalent resistance of two resistors in parallel as the rule stated earlier.

Find out more on Ohm's law here: https://brainly.com/question/231741

#SPJ4

The output power of a 400/690 V, 50 Hz, Y-connected induction motor, shown below, is 15 kW. It runs at full load with a speed of 2940 RPM. Choose the correct statement: The motor's synchronous speed is 3000 RPM and its rated power is 30 HP. O The motor's synchronous speed is 2500 RPM at 50 Hz. O The motor has 2 poles and operates at a slip of 6%. o The motor torque at full load is 48.4 Nm O The motor has 4 poles and operates at a slip of 2%.

Answers

The correct statement is that the motor has 4 poles and operates at a slip of 2%. and the motor torque at full load is 48.4 Nm

Synchronous speed of induction motor The synchronous speed (N_s) of an induction motor is calculated using the below formula: N_s = (f/P) × 120 where, f is the frequency of the power supply applied P is the number of poles in the motor

From the above formula, we get the synchronous speed of the motor = (50/2) × 120 = 3000 RPM

The motor operates at a slip of 2%.

The speed of the motor is given by, Speed of motor (N) = Synchronous speed – Slip speed where Slip speed = (Slip × Synchronous speed) / 100

Now, Speed of motor (N) = 3000 – (2% × 3000) = 2940 RPM

Therefore, the motor has 4 poles. The rated power of the motor is given as 15 kW, which is equal to 20 HP (1 HP = 0.746 kW).

So, the motor's rated power is 20 HP.

The formula for calculating the motor torque is given by the below formula, T = (P × 60) / (2 × π × N) Where, P = Output power of the motor

N = Speed of the motor

Substituting the values we get, T = (15 × 60) / (2 × π × 2940) = 48.4 Nm

Therefore, the motor torque at full load is 48.4 Nm.

know more about Synchronous speed

https://brainly.com/question/31605298

#SPJ11

The complete question is -

The output power of a 400/690 V, 50 Hz, Y-connected induction motor, shown below, is 15 kW. It runs at full load with a speed of 2940 RPM. Choose the correct statement:

o The motor's synchronous speed is 3000 RPM and its rated power is 30 HP.

O The motor torque at full load is 48.4 Nm O The motor has 4 poles and operates at a slip of 2%.

O The motor has 2 poles and operates at a slip of 6%.

O The motor's synchronous speed is 2500 RPM at 50 Hz.

Question 10 (2 points) Listen A concave mirror has a focal length of 15 cm. An object 1.8 cm high is placed 22 cm from the mirror. The image description is and Oreal; upright virtual; upright virtual; inverted real; inverted Question 11 (2 points) Listen Which one of the following statements is not a characteristic of a plane mirror? The image is real. The magnification is +1. The image is always upright. The image is reversed right to left.

Answers

The image description for the given concave mirror is inverted and real. Now, considering the characteristics of a plane mirror, the statement that is not true is: The image is real.

In a plane mirror, the image formed is always virtual, meaning it cannot be projected onto a screen. The reflected rays appear to come from behind the mirror, forming a virtual image. Therefore, the statement "The image is real" is not a characteristic of a plane mirror.

The other statements are true for a plane mirror:

The magnification is +1: The magnification of a plane mirror is always +1, which means the image is the same size as the object. The image is always upright: The image formed by a plane mirror is always upright, meaning it has the same orientation as the object.

The image is reversed right to left: The image in a plane mirror appears to be reversed from left to right, but not from right to left. This reversal is due to the mirror's reflective properties.

In summary, the statement "The image is real" is not a characteristic of a plane mirror.

Learn more about mirror here:

https://brainly.com/question/3627454

#SPJ11

Trying to earn a fishy treat, a killer whale at an aquarium excitedly slaps the water 2 times every second. If the waves that are produced travel at 0.9 m/s, what is their wavelength?

Answers

The formula for calculating wavelength is;λ = v/fWhere;λ = Wavelengthv = velocityf = frequency Frequency is measured in Hertz (Hz), while wavelength is measured in meters (m).

The frequency of the wave that is produced by the killer whale is 2 times per second. It implies that the time interval between each wave produced is 1/2 seconds.The wave velocity is 0.9 m/s.

Therefore;Wavelength = velocity / frequencyWhere;Frequency = 2 times/secondWavelength = 0.9 / 2Wavelength = 0.45 mThe wavelength of the waves produced by the killer whale is 0.45 meters.Explanation:In simple terms, frequency is the number of waves produced in one second.

On the other hand, wavelength is the distance between two corresponding points on the wave; for example, from peak to peak or from trough to trough. Wavelength is calculated by dividing the velocity of a wave by its frequency.

The formula for calculating wavelength is;λ = v/fWhere;λ = Wavelengthv = velocityf = frequencyFrequency is measured in Hertz (Hz), while wavelength is measured in meters (m).

to know more about Frequency

https://brainly.com/question/254161

#SPJ11

A heavy rope of linear mass density 0.0700 kg/m is under a tension of 50.0 N. One end of the rope is fixed and the other end is connected to a light string so that the end is free to move in the transverse direction (the other end of the light string is fixed). A standing wave with three antinodes (including the one at the string/rope interface) is set up on the rope with a frequency of 30.0 Hz, and the maximum displacement from equilibrium of a point on an antinode is 2.5 cm. Find: a) the speed of waves on the rope, b) the length of the rope, c) the expression for the standing wave on the rope. d) When the rope is oscillating at its fundamental frequency, with a maximum displacement at the antinode of 2.5 cm, what are the amplitude and the maximum transverse velocity of a point in the middle of the heavy rope?

Answers

a) The speed of waves on the rope is 1.50 m/s.

b) The length of the rope is 0.050 m or 50 cm.

c) The expression for the standing wave on the rope is: y(x, t) = A sin(kx) sin(ωt)

d) The amplitude is 0.0125 m and the maximum transverse velocity is 0.75π m/s for a point in the middle of the heavy rope when oscillating at its fundamental frequency.

a) To find the speed of waves on the rope, we can use the formula v = fλ, where v is the speed of the wave, f is the frequency, and λ is the wavelength.

In this case, the frequency is given as 30.0 Hz, and we need to find the wavelength.

Since the rope has three antinodes, the wavelength will be twice the distance between two adjacent antinodes.

Let's denote the distance between two adjacent antinodes as d.

Since the rope has three antinodes, the total length of the rope between the first and third antinode is 2d.

The length of this portion of the rope is also equal to half a wavelength (λ/2).

Therefore, we have:

2d = λ/2

Simplifying, we find:

d = λ/4

Next, we can calculate the wavelength using the displacement of the antinode.

The maximum displacement is given as 2.5 cm, which is equivalent to 0.025 m.

Since the displacement corresponds to half a wavelength, we have:

λ/2 = 0.025 m

Solving for λ, we find:

λ = 0.050 m

Now we can substitute the values of f and λ into the equation v = fλ to find the speed of waves on the rope:

v = (30.0 Hz)(0.050 m) = 1.50 m/s

Therefore, the speed of waves on the rope is 1.50 m/s.

b) The length of the rope can be calculated by multiplying the wavelength by the number of antinodes (n), excluding the fixed end.

In this case, we have three antinodes (n = 3).

Since the rope between the first and third antinode corresponds to half a wavelength, we can use the formula:

Length = (n - 1)(λ/2) = 2(0.050 m)/2 = 0.050 m

Therefore, the length of the rope is 0.050 m or 50 cm.

c) The expression for the standing wave on the rope can be written as:

y(x, t) = A sin(kx) sin(ωt)

where A is the amplitude, k is the wave number, x is the position along the rope, t is the time, and ω is the angular frequency.

In a standing wave, the displacement varies sinusoidally with position but does not propagate in space.

d) When the rope is oscillating at its fundamental frequency, with a maximum displacement at the antinode of 2.5 cm, the amplitude (A) is equal to half the maximum displacement, which is 1.25 cm or 0.0125 m.

The maximum transverse velocity (v_max) of a point in the middle of the heavy rope can be calculated using the formula v_max = Aω, where ω is the angular frequency.

For the fundamental frequency, ω = 2πf. Substituting the given frequency of 30.0 Hz, we have:

ω = 2π(30.0 Hz) = 60π rad/s

Therefore, the amplitude is 0.0125 m and the maximum transverse velocity is:

v_max = (0.0125 m)(60π rad/s) = 0.75π m/s

So, the amplitude is 0.0125 m and the maximum transverse velocity is 0.75π m/s for a point in the middle of the heavy rope when oscillating at its fundamental frequency.

Learn more about speed  here:

https://brainly.com/question/13943409

#SPJ11

An energy of 30.0 eV is required to ionize a molecule of the gas inside a Geiger tube, thereby producing an ion pair. Suppose a particle of ionizing radiation deposits 0.430 MeV of energy in this Geiger tube. What maximum number of ion pairs can it create?

Answers

The maximum number of ion pairs that the particle of ionizing radiation can create is 7167 ion pairs.

Geiger-Muller counters or tubes are used to detect ionizing radiation. Ionization chambers are used to measure radiation levels in the environment. Ionization is a process that involves the removal of electrons from an atom or molecule, converting it to a positively charged ion. The amount of energy required to ionize an atom or molecule is dependent on its electron arrangement.

The amount of energy required to ionize a molecule of gas in a Geiger tube is 30.0 eV. A particle of ionizing radiation deposits 0.430 MeV of energy in this Geiger tube, which means that the particle has enough energy to ionize a number of molecules of gas inside the tube. Therefore, we have to find the maximum number of ion pairs that it can create.

The first step in calculating the maximum number of ion pairs is to find the number of electrons that can be ionized by the particle of ionizing radiation.

The number of electrons that can be ionized by the particle of ionizing radiation can be found using the following formula:

Number of electrons ionized = Energy deposited / Ionization energyIn this case, the energy deposited is 0.430 MeV or 430,000 eV, and the ionization energy is 30.0 eV.

Number of electrons ionized = 430,000 eV / 30.0 eV = 14,333.33

The maximum number of ion pairs can be found by dividing the number of electrons ionized by 2, since each ionization produces a positive ion and a free electron.

Maximum number of ion pairs = Number of electrons ionized / 2Maximum number of ion pairs = 14,333.33 / 2 = 7167 ion pairs

Therefore, the maximum number of ion pairs that the particle of ionizing radiation can create is 7167 ion pairs.

Learn more about radiation at: https://brainly.com/question/31285748

#SPJ11

5 kg of water at 68°C is put into a refrigerator with a compressor with power of 100 W. The water is frozen to ice at 0°C in 64.34 mins. Calculate the COP of the refrigerator. a) 11.0 12. e) 23.0 b) 35.0 c) 20.0 d) 32.0 g) 29.0 h) 14.0 | i) 17.0 f) 8.0 j) 26.0

Answers

The closest option from the given choices is (f) 8.0. To calculate the coefficient of performance (COP) of the refrigerator, we need to use the formula:

COP = (Useful cooling effect)/(Work input)

First, let's calculate the useful cooling effect. The water is initially at 68°C and is cooled down to 0°C. The specific heat capacity of water is approximately 4.186 J/g°C.

Useful cooling effect = mass of water × specific heat capacity of water × change in temperature

= 5000 g × 4.186 J/g°C × (68°C - 0°C)

= 1,129,240 J

Next, let's calculate the work input. The power of the compressor is given as 100 W, and the time taken for the water to freeze is 64.34 minutes. We need to convert the time to seconds.

Work input = power × time

= 100 W × (64.34 mins × 60 s/min)

= 38,604 J

Now we can calculate the COP:

COP = Useful cooling effect / Work input

= 1,129,240 J / 38,604 J

≈ 29.2

The closest option from the given choices is (f) 8.0.

Learn more about work here:

https://brainly.com/question/30073908?

#SPJ11

Ud = Dust particles, subject to a drag force from the gas, have radial velocity Vg – r12knSt St? +1 where St is the Stokes number. Show that for particles with St > 500Min/(4c), there exist two locations where the dust velocity is zero. Will particles collect in both locations?

Answers

Answer:

For particles with St > 500Min/(4c), there exists one location where the dust velocity is zero when St is large.  There is no additional location where the dust velocity is zero, even for very large values of St.

The equation provided is:

Ud = Vg – r^(12knSt) + 1

To find the locations where the dust velocity is zero, we can set

Ud = 0 and solve for r:

0 = Vg – r^(12knSt) + 1

This equation represents a drag force acting on the dust particles, where Vg is the gas velocity and St is the Stokes number. We want to determine under what conditions there exist two locations where the dust velocity is zero.

For particles with St > 500Min/(4c), where Min is the minimum particle size and c is the speed of sound, we can consider the following:

If St is large (St ≫ 1):

In this case, the term r^(12knSt) dominates the equation compared to the other terms.

Thus, the equation simplifies to:

r^(12knSt) ≈ Vg

Taking the twelfth root of both sides:

r ≈ (Vg)^(1/(12knSt))

This indicates that there is one location where the dust velocity is zero.

If St is very large (St ≫ 500Min/(4c)):

In this scenario, the term r^(12knSt) becomes negligible compared to the other terms. Thus, the equation can be approximated as:

Vg + 1 ≈ 0

However, this equation has no solution since there is no real value of r that satisfies it. Therefore, there is no additional location where the dust velocity is zero.

To summarize, for particles with St > 500Min/(4c), there exists one location where the dust velocity is zero when St is large.

However, there is no additional location where the dust velocity is zero, even for very large values of St.

Learn more about stokes law, here

https://brainly.com/question/29565708

#SPJ11

Assume the box below has height = width and that the force is applied at the top of the box. Assuming the box does not slide, what minimum force F is needed to make the box rotate? A) The box will rotate for any non-zero force B) F=mg/2 C) F=mg D) F=2mg E) The box will not rotate no matter how large the force In class: Assume the box below has height = width and that the force is applied at the top of the box. If μ S

=0.75, what happens first as the force is gradually increased from F=0 to larger values? A) It slides first B) It rotates first C) It rotates and slides at the same moment D) It never rotates or slides, no matter how large the force In class: Assume the box below has height = width and that the force is applied at the top of the box. If μ S

=0.25, what happens first as the force is gradually increased from F=0 to larger values? A) It slides first B) It rotates first C) It rotates and slides at the same moment D) It never rotates or slides, no matter how large the force Practice : (a) Will the box slide across the floor? (b) Will the box rotate about the lower left corner?

Answers

The correct options are (a) the box will slide across the floor, and (b) the box will rotate about the lower left corner.

(a) The box will slide across the floor and (b) the box will rotate about the lower left corner. When the box is pushed at the top with force F, then the force will have two effects. First, the force will rotate the box, and second, the force will make the box slide. The box will rotate when the force F is applied and will slide when the force is large enough, that is, greater than the force of static friction.

The minimum force F needed to make the box rotate is F = mg/2.

Therefore, the correct option is (B) F=mg/2. The box will slide first when μs = 0.75 as it is greater than the force of static friction, which is holding the box in place.

The box will rotate and slide at the same moment when the force is large enough, which is equal to the force of static friction multiplied by the coefficient of static friction.

Therefore, the correct option is (C) It rotates and slides at the same moment.

The box will not slide as the force required to make it slide is greater than the force of static friction, which is holding the box in place. The box will rotate about the lower left corner when the force F is applied to the top of the box.

Therefore, the correct options are (a) the box will slide across the floor, and (b) the box will rotate about the lower left corner.

To know more about static friction

https://brainly.com/question/13680415

#SPJ11

What did Enrico Fermi ask? Where are they? How does hydrogen fuse to helium? How can a black hole form from a star? Question 39 What is the purpose of a telescope objective? To spectrally disperse light into constituent wavelengths. To gather together light rays from distant sources and concentrate them to a focus. To serve as a magnifying lens to view tiny cosmic objects. Question 40 Right ascension and declination are coordinates that mark the positions of places on the Earth. places on the celestial sphere. places on the sky with respect to an observer's local horizon

Answers

Enrico Fermi, an Italian physicist, is renowned for his work in radioactivity and nuclear physics. Fermi played a key role in the Manhattan Project, which resulted in the creation of the first nuclear weapon.

Fermi used his expertise in nuclear physics to ask two significant questions: "Where are they?" and "How does hydrogen fuse to helium?"The first question, "Where are they?" referred to extraterrestrial beings. Fermi speculated that given the vastness of the universe, it's highly probable that other forms of life exist. However, Fermi noted that despite the high probability of extraterrestrial life, humans have not yet had any interactions with extraterrestrial life.

Fermi's paradox, also known as the Fermi-Hart paradox, is the conflict between the high probability of extraterrestrial life and the lack of contact.The second question, "How does hydrogen fuse to helium?" is about nuclear fusion. Hydrogen atoms join together to create helium, a process known as nuclear fusion.

This process powers the sun and other stars, allowing them to emit light and heat. However, nuclear fusion also requires an immense amount of heat and pressure to occur. Scientists are attempting to harness nuclear fusion to create a new form of energy.

The purpose of a telescope objective is to gather light rays from distant sources and concentrate them to a focus. The objective is the most crucial component of a telescope, as it determines how much light the telescope can gather. The larger the objective, the more light the telescope can collect. Right ascension and declination are coordinates that mark the positions of places on the celestial sphere. These coordinates are used to locate celestial objects, such as stars and galaxies.

To know more about nuclear physics :

brainly.com/question/29134126

#SPJ11

In a perfect conductor, electric field is zero everywhere. (a) Show that the magnetic field is constant (B/at = 0) inside the conductor. (5 marks) (b) Show that the current is confined to the surface. (5 marks) (c) If the sphere is held in a uniform magnetic field Bî. Find the induced surface current density

Answers

(a) Inside a perfect conductor, the electric field is zero. From Faraday's law, ∇ × E = -∂B/∂t. Since ∇ × E = 0, we have -∂B/∂t = 0, which implies that the magnetic field B is constant inside the conductor.

(b) According to Ampere's law, ∇ × B = μ₀J, where J is the current density. Since B is constant inside the conductor , ∇ × B = 0. Therefore, μ₀J = 0, which implies that the current density J is zero inside the conductor. Hence, the current is confined to the surface.

(c) When a conductor is moved in a uniform magnetic field, an induced current is produced to oppose the change in magnetic flux. The induced surface current density J_induced can be found using

J_induced = σE_induced

Since the sphere is held in a uniform magnetic field Bî, the induced electric field E_induced is given by E_induced = -Bv.

Therefore, the induced surface current density J_induced = -σBv, where σ is the conductivity of the sphere.

Learn more about electric field  here:

https://brainly.com/question/28027633

#SPJ11

What is the magnitude of the force of friction an object receives if the coefficient of friction between the object and the surface it is on is 0.49 the object experiences a normal force of magnitude 229N?
Ff= Unit=

Answers

The magnitude of the force of friction acting on the object is approximately 112.21N. The unit for the force of friction is the same as the unit for the normal force, which in this case is Newtons (N).

The magnitude of the force of friction an object receives can be calculated using the equation Ff = μN, where Ff is the force of friction, μ is the coefficient of friction, and N is the normal force. In this case, with a coefficient of friction of 0.49 and a normal force of 229N, the force of friction can be calculated.

The force of friction experienced by an object can be determined using the equation Ff = μN, where Ff represents the force of friction, μ is the coefficient of friction, and N is the normal force. The coefficient of friction is a dimensionless value that quantifies the interaction between two surfaces in contact. In this scenario, the coefficient of friction is given as 0.49, and the normal force is 229N.

To find the force of friction, we can substitute the given values into the equation:

Ff = (0.49)(229N)

Ff ≈ 112.21N

Learn more about force of friction:

https://brainly.com/question/30280206

#SPJ11

A 79 kg man is pushing a 31 kg shopping trolley. The man and the shopping trolley move forward together with a maximum forward force of 225 N. Assuming friction is zero, what is the magnitude of the force (in N) of the man on the shopping trolley?
Hint: It may be easier to work out the acceleration first.
Hint: Enter only the numerical part of your answer to the nearest integer.

Answers

The magnitude of the force (in N) of the man on the shopping trolley is 64 N.

The magnitude of the force (in N) of the man on the shopping trolley is 172 N.Let's calculate the acceleration of the man and the shopping trolley using the formula below:F = maWhere F is the force, m is the mass, and a is the acceleration.The total mass is equal to the sum of the man's mass and the shopping trolley's mass. So, the total mass is 79 kg + 31 kg = 110 kg.The maximum forward force is given as 225 N. Therefore,225 N = 110 kg x aSolving for a gives,a = 2.0455 m/s².

Now, let's calculate the force (in N) of the man on the shopping trolley. Using Newton's second law of motion,F = maWhere F is the force, m is the mass, and a is the acceleration.Substituting the values we have, we get:F = 31 kg x 2.0455 m/s²F = 63.5 NTherefore, the magnitude of the force (in N) of the man on the shopping trolley is:F + 79 kg x 2.0455 m/s² = F + 161.44 N (By Newton's Second Law)F = 225 N - 161.44 NF = 63.56 N ≈ 64 N.Rounding it off to the nearest integer, the magnitude of the force (in N) of the man on the shopping trolley is 64 N.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ11

A playground carousel has a radius of 2.7 m and a rotational inertia of 148 kg m². It initially rotates at 0.94 rad/s when a 24-kg child crawls from the center to the edge. When the boy reaches the edge, the angular velocity of the carousel is: From his answer to 2 decimal places.

Answers

Answer: The angular velocity when the child reaches the edge of the carousel is 0.32 rad/s.

Radius r = 2.7 m

Rotational inertia I = 148 kg m²

Angular velocity ω1 = 0.94 rad/s

Mass of the child m = 24 kg

The angular momentum is: L = I ω

Where,L = angular momentum, I = moment of inertia, ω = angular velocity.

Initially, the angular momentum is:L1 = I1 ω1

When the child moves to the edge of the carousel, the moment of inertia changes.

I2 = I1 + m r²   where, m = mass of the child, r = radius of the carousel. At the edge, the new angular velocity is,

ω2 = L1/I2    Substituting the values in the above formulas:

L1 = 148 kg m² x 0.94 rad/s

L1 = 139.12 kg m²/s

I2 = 148 kg m² + 24 kg x (2.7 m)²

I2 = 437.52 kg m²

ω2 = 139.12 kg m²/s ÷ 437.52 kg m²

ω2 = 0.3174 rad/s.

The angular velocity of the carousel when the child reaches the edge is 0.32 rad/s.

Therefore, the angular velocity when the child reaches the edge of the carousel is 0.32 rad/s.

Learn more about moment of inertia: https://brainly.com/question/14460640

#SPJ11

An object with initial momentum 2 kgm/s to the left is acted upon by a force F = 48 N to the right for a short time interval, At. a At the end of this time interval, the momentum of the object is 4 kgm/s to the right. How long was the time interval, At ? O 1/8 s O 1/6 s O 1/12 s O 1/4 s O 1/2 s O 1/24 s o 1/16 s

Answers

The initial momentum of an object is 2 kgm/s to the left. A force of 48 N is applied to the right for a short time interval. The final momentum of the object is 4 kgm/s to the right. The duration of the time interval is 1/8 s.

According to Newton's second law of motion, the change in momentum of an object is equal to the product of the force acting on it and the time interval during which the force is applied. In this case, the initial momentum of the object is 2 kgm/s to the left, and the force acting on it is 48 N to the right. The final momentum of the object is 4 kgm/s to the right.

Using the equation

Δp = F * At,

where Δp is the change in momentum, F is the force, and At is the time interval, solving for At.

The change in momentum is given by

Δp = final momentum - initial momentum = 4 kgm/s - (-2 kgm/s) = 6 kgm/s.

The force F is 48 N.

Substituting these values into the equation, we have 6 kgm/s = 48 N * At.

Solving for At,

At = (6 kgm/s) / (48 N) = 1/8 s.

Therefore, the time interval, At, is 1/8 s.

Learn more about momentum here:

https://brainly.com/question/30677308

#SPJ11

Find solutions for your homework
science
earth sciences
earth sciences questions and answers
no need explanation, just give me the answer pls 8. select all the properties that are true concerning terrestrial and jovian planets in our solar system. a. terrestrial planets are large compared to jovian planets. b. terrestrial planets have many natural satellites compared to jovian planets.
Question: No Need Explanation, Just Give Me The Answer Pls 8. Select All The Properties That Are True Concerning Terrestrial And Jovian Planets In Our Solar System. A. Terrestrial Planets Are Large Compared To Jovian Planets. B. Terrestrial Planets Have Many Natural Satellites Compared To Jovian Planets.
No need explanation, just give me the answer pls
8. Select all the properties that are true concerning terrestrial and Jovian planets in our solar system.
A.Terrestrial planets are large compared to Jovian planets.B.Terrestrial planets have many natural satellites compared to Jovian planets.C.Terrestrial planets are found in the inner solar system.D.Terrestrial planets rotate faster than Jovian planets.E.Terrestrial planets have few moons compared to Jovian planets.F.Terrestrial planets are denser than Jovian planets.G.Terrestrial planets are less dense than Jovian planets.

Answers

A. Terrestrial planets are large compared to Jovian planets: This option is incorrect. Terrestrial planets, such as Earth, Mars, Venus, and Mercury, are generally smaller in size compared to Jovian planets.

C. Terrestrial planets are found in the inner solar system: This option is correct. Terrestrial planets are primarily located closer to the Sun, in the inner regions of the solar system.

F. Terrestrial planets are denser than Jovian planets: This option is correct. Terrestrial planets have higher average densities compared to Jovian planets. This is because terrestrial planets are composed of mostly rocky or metallic materials, while Jovian planets are predominantly composed of lighter elements such as hydrogen and helium.

G. Terrestrial planets are less dense than Jovian planets: This option is incorrect. As mentioned earlier, terrestrial planets are denser than Jovian planets, so they have higher average densities.

To summarize, the correct options are C and F. Terrestrial planets are found in the inner solar system, and they are denser than Jovian planets.

Learn more about Terrestrial

https://brainly.com/question/29775422

#SPJ11

Which of the following is correct in AC circuits? For a given peak voltage, the peak current is inversely proportional to capacitance, inversely proportional to inductance, and directly proportional to resistance. For a given peak voltage, the peak current is directly proportional to resistance, directly proportional to capacitance, and inversely proportional to inductance. For a given peak voltage, the peak current is inversely proportional to resistance, inversely proportional to capacitance, and inversely proportional to inductance. For a given peak voltage, the peak current is directly proportional to capacitance, inversely proportional to inductance, and inversely proportional to resistance.

Answers

For a given peak voltage, the peak current in an AC circuit is directly proportional to resistance, inversely proportional to capacitance, and inversely proportional to inductance.

In an AC circuit, the relationship between peak voltage (Vp), peak current (Ip), resistance (R), capacitance (C), and inductance (L) can be described using Ohm's Law and the formulas for capacitive reactance (Xc) and inductive reactance (Xl).

Ohm's Law states that Vp = Ip * R, where Vp is the peak voltage and R is the resistance. According to Ohm's Law, the peak current is directly proportional to resistance. Therefore, for a given peak voltage, the peak current is directly proportional to resistance.

In a capacitive circuit, the capacitive reactance (Xc) is given by Xc = 1 / (2πfC), where f is the frequency of the AC signal and C is the capacitance. The higher the capacitance, the lower the capacitive reactance. Therefore, for a given peak voltage, the peak current is inversely proportional to capacitance.

In an inductive circuit, the inductive reactance (Xl) is given by Xl = 2πfL, where L is the inductance. The higher the inductance, the higher the inductive reactance. Therefore, for a given peak voltage, the peak current is inversely proportional to inductance.

Thus, the correct statement is: For a given peak voltage, the peak current is directly proportional to resistance, inversely proportional to capacitance, and inversely proportional to inductance.

Learn more about Ohm's Law here:

https://brainly.com/question/1247379

#SPJ11

Part C
Now, to get numerical equations for x and y, you’ll need to know the initial values (at time t = 0) for some velocities and accelerations. On the Table below the video:

Select cm as the mass measurement set to display.
Click the Table label and check all x and y displacement and velocity data: x, y, vx, and vy. Then click Close.
Now rewrite the displacement equations from Part A and Part B above by substituting in the x and y velocity values from time t = 0 and also using the theoretical value of acceleration of gravity. Write them out below.

Answers

To rewrite the displacement equations from Part A and Part B, we'll substitute in the x and y velocity values from time t = 0 and use the theoretical value of acceleration due to gravity.

Displacement equations for x-axis (horizontal motion):

1. x = (vx)t

  where vx is the initial velocity in the x-direction.

Displacement equation for y-axis (vertical motion):

1. y = (vy)t + (1/2)(g)(t^2)

  where vy is the initial velocity in the y-direction and g is the acceleration due to gravity.

1. Start by selecting cm as the mass measurement set to display.

2. Click on the Table label and check all x and y displacement and velocity data: x, y, vx, and vy.

3. Click Close to save the changes.

4. Now, let's rewrite the displacement equations using the given values.

  - For the x-axis displacement, substitute the initial x-velocity value (vx) at time t = 0 into the equation: x = (vx)t.

  - For the y-axis displacement, substitute the initial y-velocity value (vy) at time t = 0 and the acceleration due to gravity (g) into the equation: y = (vy)t + (1/2)[tex](g)(t^2[/tex]).

Please note that the specific values for vx, vy, and g should be provided in the question or the given table. Make sure to substitute the correct values to obtain the numerical equations for x and y displacement.

For more such questions on velocity, click on:

https://brainly.com/question/29396365

#SPJ8

The period of a simple pendulum on the surface of Earth is 2.29 s. Determine its length .

Answers

A simple pendulum is a mass suspended from a cable or string that swings back and forth. The period of a simple pendulum is the time it takes to complete one cycle or oscillation. The length of the simple pendulum is approximately 0.56 meters.

The formula for the period of a simple pendulum is:

T = 2π√(L/g)

Where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. Since the period of the pendulum and the acceleration due to gravity on Earth are known, we can use this formula to solve for L.

T = 2.29 s (given)

g = 9.81 m/s² (acceleration due to gravity on Earth)

We can now solve for L:

L = (T²g)/(4π²)

Substitute the values: L = (2.29 s)²(9.81 m/s²)/(4π²)

L = 0.56 m (rounded to two decimal places)

To learn more about simple pendulum, refer:-

https://brainly.com/question/29183311

#SPJ11

An electron travels at a speed of 2.0×107 ms in a plane perpendicular to a magnetic field of 0.010 T. Determine the path of its orbit, the period, and the frequency of rotation.

Answers

The path of the electron's orbit is a circle with a radius of approximately 0.715 meters. The period of rotation is approximately [tex]2.25 * 10^-^7[/tex]seconds, and the frequency of rotation is approximately [tex]4.44 * 10^6 Hz[/tex].

When an electron moves perpendicular to a magnetic field, it experiences a magnetic force that acts as the centripetal force, keeping the electron in a circular path. The centripetal force can be equated to the magnetic force:

[tex]mv^2/r = qvB[/tex]

Where m is the mass of the electron, v is its velocity, r is the radius of the orbit, q is the charge of the electron, and B is the magnetic field strength.

We can rearrange the equation to solve for the radius of the orbit:

r = mv/(qB)

Substituting the given values, we have:

[tex]r = (9.11 * 10^{-31} kg)(2.0 * 10^7 ms)/((1.6 * 10^-{19} C)(0.010 T))[/tex]

Calculating this, we find the radius of the orbit to be approximately 0.715 meters.

To determine the period, we use the equation:

T = 2πr/v

Substituting the values:

[tex]T = 2\pi(0.715 m)/(2.0 * 10^7 ms)[/tex]

Calculating this, we find the period to be approximately [tex]2.25 * 10^-^7[/tex]seconds.

The frequency of rotation can be found using the equation:

f = 1/T

Substituting the period value, we get:

[tex]f = 1/(2.25 * 10^-^7 s)[/tex]

Calculating this, we find the frequency of rotation to be approximately [tex]4.44 * 10^6 Hz[/tex].

Learn more centripetal force here:

https://brainly.com/question/14021112

#SPJ11

Required information Photoelectric effect is observed on two metal surfaces. Light of wavelength 300.0 nm is incident on a metal that has a work function of 2.70 eV. What is the maximum speed of the emitted electrons? m/s

Answers

The maximum speed of the emitted electrons, resulting from the photoelectric effect when light with a wavelength of 300.0 nm is incident on a metal, is approximately 5.94 x [tex]10^{5}[/tex] m/s.

The maximum speed of the emitted electrons can be determined using the equation for the kinetic energy of an electron in the photoelectric effect: KE = hν - Φ, where KE is the kinetic energy of the electron, h is Planck's constant, ν is the frequency of the incident light (which can be calculated using the speed of light and the wavelength), and Φ is the work function of the metal.

First, we need to calculate the frequency of the incident light. The speed of light can be given as c = λν, where c is the speed of light, λ is the wavelength of the light, and ν is the frequency. Rearranging the equation, we find ν = c/λ. Substituting the given values, the frequency is ν = (3.00 x [tex]10^{8}[/tex]m/s) / (300.0 x [tex]10^{-9}[/tex] m) = 1.00 x [tex]10^{15}[/tex] Hz.

Next, we can calculate the kinetic energy of the emitted electron using KE = (6.63 x [tex]10^{-34}[/tex]J s) * (1.00 x [tex]10^{15}[/tex] Hz) - (2.70 eV * 1.60 x [tex]10^{-19}[/tex] J/eV). Converting the electron volt (eV) to joules (J), the kinetic energy is approximately 9.35 x [tex]10^{-19}[/tex] J.

Finally, we can calculate the maximum speed of the emitted electrons using the equation KE = (1/2)m[tex]v^{2}[/tex], where m is the mass of the electron. Rearranging the equation, we find [tex]v = \sqrt{\frac{2K.E}{m} }[/tex].Substituting the values, the maximum speed of the emitted electrons is approximately 5.94 x [tex]10^{5}[/tex] m/s.

Learn more about photoelectric here:

https://brainly.com/question/9260704

#SPJ11

What is the maximum speed at which a car may travel over a humpbacked bridge of radius 15 m without leaving the ground?

Answers

The maximum speed at which a car may travel over a humpbacked bridge of radius 15 m without leaving the ground is approximately 12.1 m/s. A humpbacked bridge of radius 15 meters is modeled by a circle.

The car will leave the ground if the normal force exerted by the road on the car becomes zero. At that point, the gravitational force acting on the car will be the only force acting on the car. This means that the car will be in free fall. So, the maximum speed of the car without leaving the ground can be calculated using the formula:

vmax = √rg

where vmax is the maximum speed, r is the radius of the circle, and g is the acceleration due to gravity. We are given r = 15 m. g = 9.81 m/s², since the bridge is on the surface of the Earth.

vmax = √(rg) = √(15*9.81) = √147.15 ≈ 12.1 m/s

To learn more about speed, refer:-

https://brainly.com/question/28224010

#SPJ11

Particles with a density of 1500 kg/m3 are to be fluidized with
air at 1.36 atm absolute and 450oC in a vessel with a
diameter of 3 m. A bed weighing 15 tons containing particles of an
average particl

Answers

When particles with a density of 1500 kg/m3 are to be fluidized with air at 1.36 atm absolute and 450oC in a vessel with a diameter of 3 m and a bed weighing 15 tons containing particles of an average particle size of 0.05 cm, the bed height must be calculated.

However, for calculating the bed height, more information is required. The question must provide the velocity of air, the angle of repose of the particles, and the pressure drop.To calculate the minimum fluidization velocity, the following formula can be used:Vmf = {[1500 x g x (1 - (1 / e))] / [(1500/1.2) + (1.36 x 10^5) + (1.25 x 10^(-5) x 450)]}^(1/2)Where,Vmf is the minimum fluidization velocity in m/s,g is the acceleration due to gravity in m/s^2, ande is the void fraction of the bed.The angle of repose of the particles is a measure of how much the bed will expand, which is needed to calculate the bed height.The bed height, which is the total height of the bed, can be calculated using the following formula:H = [(V * Q)/ε] + HcWhere,H is the total height of the bed in meters,V is the velocity of air in m/s,Q is the volumetric flow rate of air in m^3/s,ε is the void fraction of the bed, andHc is the height of the distributor in meters.

To know more about microsphere visit:

https://brainly.com/question/30542669

#SPJ11

What is the Nature of Science and interdependence of science, engineering, and technology regarding current global concerns?
Discuss a current issue that documents the influence of engineering, technology, and science on society and the natural world.
And answer the following questions:
How has this issue developed (history)?
What are the values and attitudes that interact with this issue?
What are the positive and negative impacts associated with this issue?
What are the current and alternative policies associated with this issue and what are the strategies for achieving these policies?

Answers

The issue of reducing fossil fuel use and mitigating climate change requires the development of alternative energy sources through science, engineering, and technology. This involves implementing policies such as carbon taxes, incentives for renewable energy, and investment in research and development.

The nature of science refers to the methodology and principles that scientists use to investigate the natural world. It is the system of obtaining knowledge through observation, testing, and validation. On the other hand, engineering involves designing, developing, and improving technology and machines to address social and economic needs. Technology is the application of scientific knowledge to create new products, devices, and tools that improve people’s quality of life.

One current global concern is the use of fossil fuels and the resulting greenhouse gas emissions that contribute to climate change. The interdependence of science, engineering, and technology is crucial to developing alternative energy sources that can reduce our dependence on fossil fuels.

How has this issue developed (history)?
The burning of fossil fuels has been an integral part of the world economy for over a century. As the world population and economy have grown, the demand for energy has increased, resulting in increased greenhouse gas emissions. The development of alternative energy sources has been ongoing, but it has not yet been adopted on a large scale.

What are the values and attitudes that interact with this issue?
Values and attitudes towards climate change and the environment are essential factors in determining how society deals with this issue. There is a need for increased awareness and understanding of the issue and the need for action. However, some people may resist change due to economic or political interests.

What are the positive and negative impacts associated with this issue?
Positive impacts of alternative energy sources include reduced greenhouse gas emissions and air pollution, improved public health, and the creation of new job opportunities. Negative impacts include the high initial cost of implementing alternative energy sources and the potential loss of jobs in the fossil fuel industry.

What are the current and alternative policies associated with this issue and what are the strategies for achieving these policies?
Current policies include carbon taxes, renewable energy incentives, and regulations on greenhouse gas emissions. Alternative policies include cap-and-trade systems and subsidies for renewable energy research and development. Strategies for achieving these policies include increased public awareness and education, political advocacy, and investment in research and development.

Learn more about technology

https://brainly.com/question/7788080

#SPJ11

A light ray is incident at an angle of 20° on the surface between air and water. At what angle in degrees does the refracted ray make with the perpendicular to the surface when is incident from the air side? Use index of refraction for air as 1.0 while water 1.33. (Express your answer in 2 decimal place/s, NO UNIT REQUIRED)

Answers

When a light ray passes from air to water, it refracts bends due to the change in refractive index. In this case, the angle of incidence is 20° and the refracted ray makes an angle of 27.53° with the perpendicular to the surface.

When a light ray passes from one medium to another, it bends due to the change in speed caused by the change in the refractive index of the materials. The relationship between the angles of incidence and refraction is given by Snell's Law, which states that:

n₁sinθ₁ = n₂sinθ₂

where n₁ and n₂ are the refractive indices of the two media, θ₁ is the angle of incidence, and θ₂ is the angle of refraction.

In this problem, n₁ = 1.0 (the refractive index of air) and n₂ = 1.33 (the refractive index of water). The angle of incidence θ₁ = 20°.

Using Snell's law, we can solve for the angle of refraction θ₂:

sinθ₂ = (n₁/n₂)sinθ₁

sinθ₂ = (1.0/1.33)sin20°

sinθ₂ = 0.4494

Taking the inverse sine of both sides, we get:

θ₂ = 27.53°

Therefore, the refracted ray makes an angle of 27.53° with the perpendicular to the surface when it is incident from the air side.

To know more about refraction, visit:
brainly.com/question/14760207
#SPJ11

Workmen are trying to free an SUV stuck in the mud. To extricate the vehicle, they use three horizontal ropes, producing the force vectors shown in the figure. (Figure 1) Take F 1

=853 N,F 2

=776 N, and F 3

= 386 N. Figure 1 of 1 Find the x components of each of the three pulls. Express your answers in newtons to three significant figures separated by commas. Part B Find the y components of each of the three puils. Express your answers in newtons to three significant figures separated by commas. Use the components to find the magnitude of the resultant of the three pulls. Express your answer in newtons to three significant figures. Part D Use the components to find the direction of the resultant of the three pulls. Express your answer as the angle counted from +x axis in the counterclockwise direction.

Answers

Part A:  The x components of the three pulls are 698 N, 594 N, and 193 N.

Part B: The y components of the three pulls are 489 N, 502 N, and 334 N.

Part C: The magnitude of the resultant of the three pulls is 1427 N.

Part D: the direction of the resultant of the three pulls is 44.5 degrees counted from the +x axis in the counterclockwise direction.

Part A:

To find the x components of each of the three pulls:

F1x= F1cos(35)

F1x = 853 cos(35)N = 698 N

F2x = F2cos(40)

F2x = 776 cos(40)N = 594 N

F3x = F3cos(60)

F3x = 386 cos(60)N = 193 N

Thus, the x components of the three pulls are 698 N, 594 N, and 193 N.

Part B:

To find the y components of each of the three pulls:

F1y= F1sin(35)

F1y = 853 sin(35)N = 489 N

F2y = F2sin(40)

F2y = 776 sin(40)N = 502 N

F3y = F3sin(60)

F3y = 386 sin(60)N = 334 N

Thus, the y components of the three pulls are 489 N, 502 N, and 334 N.

Part C: To find the magnitude of the resultant of the three pulls:

R = √(Rx^2 + Ry^2)

R = √[(698 N + 594 N + 193 N)^2 + (489 N + 502 N + 334 N)^2]

R = 1427 N

Thus, the magnitude of the resultant of the three pulls is 1427 N.

Part D: To find the direction of the resultant of the three pulls:

θ = tan^-1(Ry/Rx)θ = tan^-1[(489 N + 502 N + 334 N)/(698 N + 594 N + 193 N)]

θ = 44.5 degrees

Thus, the direction of the resultant of the three pulls is 44.5 degrees counted from the +x axis in the counterclockwise direction.

To learn about magnitude here:

https://brainly.com/question/30337362

#SPJ11

Which of the following magnetic fluxes is zero? B = 4Tî – 3TÂ and А A= -3m%j + 4m2 B = 4T - 3Tk and A = 3m² – 3m2; O B = 4T - 3TR B 3ТА and A = 3m2 – 3m29 + 4m²k 0 B = 4TÊ – 3T and A = 3m2 + 3mºj - 4m²k

Answers

Of the following magnetic fluxes is zero. the magnetic flux is zero for Option D, where B = 4Tî - 3T and A = 3m² + 4m²k.

To determine which of the given magnetic fluxes is zero, we need to calculate the dot product of the magnetic field vector B and the vector A. If the dot product is zero, it means that the magnetic flux is zero.

Let's examine each option:

Option A: B = 4Tî - 3TÂ and A = -3m%j + 4m²k

The dot product of B and A is:

B · A = (4T)(-3m%) + (-3T)(4m²) + (0)(0) = -12Tm% - 12Tm²

Since the dot product is not zero, the magnetic flux is not zero.

Option B: B = 4T - 3Tk and A = 3m² - 3m²

The dot product of B and A is:

B · A = (4T)(3m²) + (0)(-3Tk) + (-3T)(0) = 12Tm² + 0 + 0

Since the dot product is not zero, the magnetic flux is not zero.

Option C: B = 4TÊ - 3T and A = 3m² + 3mºj - 4m²k

The dot product of B and A is:

B · A = (0)(3m²) + (-3T)(3mº) + (4T)(-4m²) = 0 - 9Tmº - 16Tm²

Since the dot product is not zero, the magnetic flux is not zero.

Option D: B = 4Tî - 3T and A = 3m² + 4m²k

The dot product of B and A is:

B · A = (4T)(3m²) + (0)(0) + (-3T)(4m²) = 12Tm² + 0 + (-12Tm²)

The dot product simplifies to zero.

Therefore, in Option D, the magnetic flux is zero.

Learn more about magnetic field here:

https://brainly.com/question/7645789

#SPJ11

Reverberation time is the time taken by reflected sound to decay by 60 dB from the original sound level. Discuss why direct sound could not be heard in a live room.

Answers

Reasons why direct sound could not be heard in a live room are Reverberation, Reflections, and Distortion.

Reverberation time is the time taken by reflected sound to decay by 60 dB from the original sound level. Direct sound could not be heard in a live room due to the following reasons:

Reasons why direct sound could not be heard in a live room are as follows:

1. Reverberation: The direct sound is quickly absorbed by the listener or reflected off the walls in an uncontrolled fashion in a small, untreated room. The time difference between the direct sound and the first reverberation makes it difficult to hear the direct sound. Reverberation, in general, masks the direct sound. This makes it difficult to hear the direct sound as it is drowned out by the reverberant sound.

2. Reflections: The sound can be reflected in many directions by walls, floors, and ceilings. This creates multiple reflections of sound in a room, which causes a 'comb-filtering' effect. This can cause dips or peaks in the frequency response of the room. This makes the sound in a live room sound hollow and unnatural.

3. Distortion: The direct sound can be distorted when it reaches the listener in a live room due to reflections and other factors. This distortion can cause the sound to be harsh, harsh, and brittle. This makes it difficult to listen to music in a live room.


Learn more about sound here:

https://brainly.com/question/32257037


#SPJ11

A coil of conducting wire carries a current i. In a time interval of At = 0.490 s, the current goes from i = 3.20 A to iz = 2.20 A. The average emf induced in the coil is a = 13.0 mv. Assuming the current does not change direction, calculate the coil's inductance (in mH). mH

Answers

The average emf induced in a coil is given by the equation: ε = -L(dI/dt)  Therefore, the inductance of the coil is:   L = 6.37 mH

ε = -L(dI/dt)

where ε is the average emf, L is the inductance, and dI/dt is the rate of change of current.

In this case, the average emf is given as 13.0 mV, which is equivalent to 0.013 V. The change in current (dI) is given by:

dI = i_final - i_initial

= 2.20 A - 3.20 A = -1.00 A

The time interval (Δt) is given as 0.490 s.

Plugging these values into the equation, we have:

0.013 V = -L(-1.00 A / 0.490 s)

Simplifying the equation:

0.013 V = L(1.00 A / 0.490 s)

Now we can solve for L:

L = (0.013 V) / (1.00 A / 0.490 s)

= (0.013 V) * (0.490 s / 1.00 A)

= 0.00637 V·s/A

Since the unit for inductance is henries (H), we need to convert volts·seconds/ampere to henries:

1 H = 1 V·s/A

Therefore, the inductance of the coil is:

L = 0.00637 H

Converting to millihenries (mH):

L = 0.00637 H * 1000

= 6.37 mH

So, the coil's inductance is 6.37 mH.

Learn more about inductance here

https://brainly.com/question/31127300

#SPJ11

Other Questions
Given f(x)=x and g(x)=x^3+2, determine: a) (fg)(2) b) (gg)(1) C) (gf)(x)=x^3+2 Question 11 According to Barack Obama, "middle-class squeeze" is largely due to ethical problems with: O racism, sexism and power O the white community O corporate culture O the black community Question 12 as defined in international law is a continuing fact of day-to-day life for North America's native peoples. O "Egalitarianism O Genocide O Prosperity O Equality Question 13 Fears argues that "Race matters in Latin America, "but it matters O more, Brazil O more, Russia O differently, United States O less, Europe than in the With the bubble centered, a 300-ft sight gives a reading of 5.143 ft. After moving the bubble three divisions off center, the reading is 5.185 ft. Part B For 2-mm vial divisions, what is the angle in seconds subtended by one division? Express your answer to the nearest second. A vec 2) ? Submit Previous Answers Request Answer Nexis Corp. issues 2,890 shares of $8 par value common stock at $17 per share. When the transaction is journalized, credits are made toa.Common Stock, $26,010 and Paid-In Capital in Excess of Stated Value, $23,120.b.Common Stock, $26,010 and Retained Earnings, $23,120.c.Common Stock, $23,120, and Paid-In Capital in Excess of ParCommon Stock, $26,010.d.Common Stock, $49,130. A commercial Building, 60hz, Three Phase System, 230V with total highest Single PhaseAmpere Load of 1,088 Amperes, plus the three-phase load of 206Amperes including thehighest rated of a three-phase motor of 25HP, 230V, 3Phase, 68Amp Full Load Current.Determine the Following through showing your calculations.The Size of THHN Copper Conductor (must be conductors in parallel, either 2 to 5sets),TW Grounding Copper Conductor in EMT Conduit.b. The Instantaneous Trip Power Circuit Breaker Sizec. The Transformer Sized. Generator Size what camera techniques were used in the film Psycho by AlfredHitchcock? Also, how did the use of props aid in the storyline? The category of security with the highest risk premium is?A) small company stocksB)government bondsC)small company corporate bondsD) large company stocks Measure the focal distance f, the distance of the object arrow from the mirror d 0, and the distance of its image from the mirror d 1. Record your results here f=126.81 do=0.29 mdi=0.17 mQuestion 2-2: Are your results consistent with the mirror equation? Explain. If not, discuss what you think are the reasons for the disagreement. QUESTION 2-3: Based on your observations, is the image created by a concave mirror real or virtual? Explain. QUESTION 2-4: Qualitatively, is the magnification and orientation of the image consistent with the magnification equation? Explain. Noah wants observe what happens when zinc is placed in a solution of copper sulfate, as shown in the photo. But when he tries it, nothing happens. He knows that the reaction might be happening too slowly to see results in a few minutes. Which action should Noah take to speed up the reaction? 1. from blackman text What is the idea of "Absurdity" and how was that idea expressed in the post-war world?2. from blackman text Describe the beginning of the Cold War and trace how its progression through the early 1970s. straight to the point answers please During the 18th century, why was education not embraced as asolution for racial conflict? Determine the internal energy change in kJ/kg of hydrogen, as its heated from 200 to 800 K, using, (a) The empirical specific heat equation (table A-2c) (b) The specific heat value at average temperature (table A-2b) (c) The specific heat value at room temperature (table A-2a) this is a thermodynamics question. in the table, they've only given Cp and not Cv. how do I find it? Writea paragraph about Gallimard's fantasy of being himself the Asianwoman of his fantasy. (Madame Butterfly) A 150,000 kg space probe is landing on an alien planet with a gravitational acceleration of 10.00. If its fuel is ejected from the rocket motor at 37,000 m/s what must the mass rate of change of the space ship (delta m)/( delta t) be to achieve at upward acceleration of 2.50 m/s 2 ? Remember to use the generalized form of Newton's Second Law. Your Answer: The experimental P-V data for benzene at 402C from very low pressures up to about 75 bar, may be represented by the equation: V = 0.0561(1/P-0.0046) Consider V is the molar volume in m /mol and P is in bar. Find the fugacity of benzene at 1 bar and 675 K. The average human body contains 6.10 L of blood with a Fe_2+ concentration of 1.3010^5M. If a person ingests 11.0 mL of 16.0mMNaCN, what percentage of iron(II) in the blood would be sequestered by the cyanide ion? A 33.5-g glass thermometer reads 21.6C before it is placed in 139 mL of water. When the water and thermometer come to equilibrium, the thermometer reads 42.8C. Ignore the mass of fluid inside the glass thermometer. The value of specific heat for water is 4186 J/kg.C, and for glass is 840 J/kg.C. What was the original temperature of the water? Express your answer using three significant figures. Carbon in the ocean originates from the atmosphere.Please select the best answer from the choices provi A fan operates inside of a rigid container that is well insulated. Initially, the container has air at 25C and 200 kPa. If the fan does 700 kJ of work and the volume of the container is 2 m^3, what would the entropy increase be? Assume constant specific heats. The G string on a guitar has a linear mass density of 3 g mand is 63 cm long. It is tuned to have a fundamental frequency of 196 Hz. (a) What is the tension in the tuned string? (b) Calculate the wavelengths of the first three harmonics. Sketch the transverse displacement of the string as a function of x for each of these harmonics,