Explanation:
first convert the km/hr in m/s and apply the formula:v=u+at
then put all the values given
;here 36km/hr is the initial velocity(u)
acceleration(a)=2.5m/s²
time=30sec.
a crane is moving a honda from a point on the ground to the top of a building. if the honda weighs 1400 kg and it lifts the car with a constant velocity of 6.0 m/s, what is the power the crane exerts during this lift?
The power exerted by the crane during the lift is 82,404 watts.
To calculate the power exerted by the crane while lifting a 1400 kg Honda at a constant velocity of 6.0 m/s, follow these steps:
1. First, calculate the gravitational force acting on the Honda using the equation F = m * g, where F is the force, m is the mass of the Honda (1400 kg), and g is the acceleration due to gravity (approximately 9.81 m/s²).
F = 1400 kg * 9.81 m/s²
F = 13734 N
2. Next, calculate the work done by the crane to lift the Honda at a constant velocity. Work is given by the equation:
W = F * d, where W is the work done, F is the force calculated in step 1, and d is the distance traveled (which can be calculated as the velocity multiplied by time).
However, since the crane is lifting at a constant velocity, the work done equals the force applied.
W = F
W = 13734 J
3. Finally, calculate the power exerted by the crane. Power is given by the equation P = W / t, where P is the power, W is the work done (calculated in step 2), and t is the time taken to lift the Honda.
Since the Honda is lifted at a constant velocity of 6.0 m/s, the power can be calculated as P = F * v, where F is the force and v is the velocity.
P = 13734 N * 6.0 m/s
P = 82404 W
Therefore, the power exerted by the crane is 82,404 watts.
To know more about power click here:
https://brainly.com/question/30817666
#SPJ11
a pendulum oscillates with a frequency of 1.5 hz . what is its length? express your answer to two significant figures and include the appropriate units.
The length of the pendulum is approximately 1.04 m, rounded to two significant figures.
The period (T) of a pendulum is given by T = [tex]2π√(L/g)[/tex], where L is the length of the pendulum and g is the acceleration due to gravity (approximately 9.81 [tex]m/s^2[/tex]). The frequency (f) of the pendulum is simply the inverse of the period, so f = 1/T.
Given that the frequency of the pendulum is 1.5 Hz, we can calculate the period as follows: f = 1/T 1.5 Hz = 1/T T = 1/1.5 s T = 0.667 s Now, we can use the period formula to find the length of the pendulum: T = 2π√(L/g) 0.667 s =[tex]2π√[/tex]([tex]L/9.81 m/s^2[/tex]) 0.667 s/([tex]2π[/tex]) = [tex]√(L/9.81 m/s^2[/tex]) 0.106 [tex]s^2/m =[/tex] [tex]L/9.81 m/s^2 L[/tex]= 1.04 m
Therefore, the length of the pendulum is approximately 1.04 m, rounded to two significant figures. It's important to note that the length of a pendulum affects its period and, consequently, its frequency.
Learn more about frequency here:
https://brainly.com/question/29739263
#SPJ4
how is rotational inertia similar to inertia as we studied it in the previous chapters? how does torque affect rotation? explain the lever arm.
Rotational inertia is similar to inertia in that both deal with an object's resistance to changes in motion. Torque affects rotation by causing a change in an object's rotational motion. Lever arm refers to the distance between the axis of rotation and the point where a force is applied to an object.
Inertia is the tendency of an object to remain at rest or in uniform motion unless acted upon by an external force. Similarly, rotational inertia is an object's resistance to changes in its rotational motion. Both types of inertia depend on the mass of the object and the distribution of that mass relative to the axis of rotation.
Torque is defined as the force applied to an object multiplied by the distance from the axis of rotation. The greater the torque applied to an object, the greater the change in its rotational motion.
For example, if a wrench is used to apply a torque to a bolt, the bolt will either start to rotate or its rotational speed will increase.
In general, torque causes an object to experience an angular acceleration in the direction of the torque.
The lever arm determines the amount of torque that can be applied to an object. The longer the lever arm, the greater the torque that can be applied to an object.
Similarly, the shorter the lever arm, the smaller the torque that can be applied to an object.
In general, the lever arm is an important factor in determining how much torque can be applied to an object.
For more such questions on Rotational inertia, click on:
https://brainly.com/question/14001220
#SPJ11
the work done on a sligshot is 40 to pull back a 0.10 kg stone. if the slingshot projects the stone straight up in the air, what is the maximum height to which the stone will rise?
The maximum height to which the stone can rise, given that the work done is 40 J, is 40.82 m
How do i determine the maximum height to which the stone can rise?First, we shall list out the given parameters from the question. This is given below:
Work done (Wd) = 40 JoulesMass of stone (m) = 0.10 KgAcceleration due to gravity (g) = 9.8 m/s² Maximum height (h) =?We can obtain the maximum height to which the stone can rise as follow
Wd = mgh
40 = 0.10 × 9.8 × h
40 = 0.98 × h
Divide both sides by 0.98
h = 40 / 0.98
h = 40.82 m
Thus, the maximum height to which the stone can rise is 40.82 m
Learn more about height:
https://brainly.com/question/22740770
#SPJ1
a cup of hot coffee sits in a cool, well-insulated room. heat transfer between the coffee and air in the room causes the coffee to lose 1 kj of energy while the air gains 1 kj. which law of thermodynamics was violated?
The scenario described in the student question does not violate any law of thermodynamics. In fact, it is consistent with the First Law of Thermodynamics, which is also known as the Law of Energy Conservation.
The First Law of Thermodynamics states that energy cannot be created or destroyed, but it can be converted from one form to another. In this case, the heat transfer between the hot coffee and the cool air in the room is an example of energy being transferred from one object to another. The coffee loses 1 kJ of energy in the form of heat, while the air gains 1 kJ of energy. Since the energy lost by the coffee is equal to the energy gained by the air, the total amount of energy in the system remains constant, and there is no violation of the First Law of Thermodynamics.
It is important to note that the Second Law of Thermodynamics, which states that the total entropy of an isolated system can never decrease over time, is also not violated in this scenario. Entropy is a measure of the dispersal of energy, and in this case, the heat transfer from the coffee to the air results in an increase in the overall entropy of the system.
The heat transfer between the hot coffee and the cool air in the well-insulated room does not violate any law of thermodynamics. Instead, it follows the First Law of Thermodynamics, which deals with energy conservation, and is also consistent with the Second Law of Thermodynamics, as the overall entropy of the system increases.
Know more about Thermodynamics here:
https://brainly.com/question/1368306
#SPJ11
which things are audible? select all that apply. responses clouds forming clouds forming birds singing in the trees birds singing in the trees lightning streaking across the sky lightning streaking across the sky wind howling
Audible things: birds singing, wind howling. Clouds forming and lightning are not audible because they don't produce sound waves.
Of the choices given, two things are discernible: birds singing in the trees and wind yelling.
Mists framing and lightning streaking across the sky are not perceptible on the grounds that they don't deliver sound waves. Mists framing are a visual peculiarity brought about by changes in temperature and dampness in the air, and lightning produces electromagnetic waves however not sound waves.
Birds singing in the trees and wind crying are both perceptible in light of the fact that they produce sound waves. Birds produce sound by vibrating their vocal ropes, and the subsequent sound waves can head out through the air to be heard by people. Wind can make objects vibrate, delivering sound waves that can likewise be heard by people.
To learn more about audible wave, refer:
https://brainly.com/question/30065253
#SPJ4
What is the initial velocity of a ball that is thrown downward at the rooftop of a 35 m building and falls to the ground after 2.25 s?
The initial velocity of the ball that was thrown downward from a height of 35 m is 4.53 m/s².
What is velocity?Velocity is the rate of change of displacement.
To calculate the initial velocity of the ball, we use the formula below,
Formula:
s = ut+gt²/2.................... Equation 1Where:
s = Distancet = Timeu = Initial velocityg = Acceleration due to gravityFrom the question,
Given:
t = 2.25 sg = 9.8 m/s² (Thrown upward)s = 35 mSubstitute these values into equation 1 and solve for u
35 = (2.25×u)+(9.8×2.25²)/235 = 2.25u+24.812.25u = 35-24.812.25u = 10.19u = 10.19/2.25u = 4.53 m/sHence, the initial velocity is 4.53 m/s².
Learn more about velocity here: https://brainly.com/question/24445340
#SPJ1
a car travels up a hill at constant speed without skidding. the force acting on the car that pushes it up the hill is:
This force must be equal in magnitude to the component of the weight of the car that is parallel to the hill to maintain a constant speed without skidding.
The force of friction is given by the equation:
[tex]normal force = m * g * cos(\theta)[/tex]
Therefore, the force that pushes the car up the hill is:
pushing force = frictional force = coefficient of friction * m * g * cos(θ)
Frictional force arises due to the irregularities present on the surfaces in contact which interlock with each other when they are pressed together. This force acts parallel to the surface of contact and in the opposite direction of motion or intended motion.
Frictional force can be divided into two types: static friction and kinetic friction. Static friction is the force that must be overcome to start an object moving from rest, while kinetic friction is the force that opposes the motion of an object that is already moving. Frictional force has important implications in many everyday situations. For example, it allows cars to stop, helps us walk without slipping, and enables machines to operate.
To learn more about Frictional force visit here:
brainly.com/question/13707283
#SPJ4
4. A student is thinking about how the results of this activity apply to driving a
car and says:
The puck slid a bigger distance before stopping when it was moving faster.
That means that if I'm driving my car 40 mph instead of 20 mph, I should hit
my brakes twice as far from a stop sign to stop my car in time.
Do you agree with this statement? Explain your reasoning using evidence from
your computational model.
Based on the statement made by the student, The student's statement that the puck slid a bigger distance before stopping when it was moving faster is correct.
What is the distance about?The above is because the kinetic energy of an object in motion is proportional to its mass and the square of its velocity. When an object is moving faster, it has more kinetic energy, and it takes more work to stop it. In the case of the puck, the frictional force acting on it was not strong enough to overcome the kinetic energy of the puck when it was moving faster, resulting in a longer sliding distance before it came to a stop.
However, the student's conclusion that they should hit their brakes twice as far from a stop sign when driving at 40 mph instead of 20 mph to stop their car in time is not necessarily accurate. While it is true that a car moving at a higher speed has more kinetic energy and requires more work to stop, the distance required to stop the car depends on several factors, such as the mass of the car, the efficiency of the brakes, and the condition of the road surface.
Read more about distance here:
https://brainly.com/question/26550516
#SPJ1
when measuring your angles of incidence and angles of refraction, how should you always make sure to measure them?
When measuring angles of incidence and angles of refraction, always make sure to measure them from the normal line, which is perpendicular to the surface at the point of contact. This ensures accurate measurements and proper calculations in refraction scenarios.
When measuring angles of incidence and angles of refraction, it is essential to ensure that you always measure them using the correct tools or instruments.What is an angle?An angle is a measure of rotation, expressed in degrees, that two lines or sides create around a common point called the vertex. Two rays or lines originate from a single point and diverge in different directions to form an angle.Measuring anglesTo measure angles, you'll need a protractor, a device that's specifically built for this task. Place the protractor on the angle's vertex so that the base lines of the protractor are parallel to the lines or sides of the angle you're measuring.Angle of incidenceThe angle of incidence is the angle between the incident ray and the normal line to a surface, such as the surface of an optical lens, mirror, or prism. The angle of incidence is denoted by the Greek letter “θ” (theta).Angle of refractionThe angle of refraction is the angle between the refracted ray and the normal line to a surface, such as the surface of an optical lens, mirror, or prism. The angle of refraction is denoted by the Greek letter “θ” (theta).Therefore, when measuring angles of incidence and angles of refraction, it is essential to ensure that you always measure them using the correct tools or instruments. The angle measurement process is done using a protractor.
Learn more about angles of refraction here;
https://brainly.com/question/14760207
#SPJ4
A 5 kg cannonball is shot out of a cannon and has an acceleration of 8 m/s^2 at the point where it exits the cannon. What force, in N, was applied to the cannonball? (only enter the number)
The force, in N, applied to the cannonball can be calculated using Newton's Second Law of Motion, which states that the force applied to an object is equal to its mass times its acceleration:
Force = mass x acceleration
Plugging in the given values, we get:
Force = 5 kg x 8 m/s^2 = 40 N
Therefore, the force applied to the cannonball was 40 N.
the sum of the second and eight term of an arithmetic progression is 52. if the difference between the third is. i common difference ii first term iii 20th term.
The common difference is (26-a)/4, the first term is (3a+26)/4, and the 20th term is (81a-494)/4.
What is the common difference?Let's call the first term of the arithmetic progression "a" and the common difference "d".
Then, the second term would be "a + d", the third term would be "a + 2d", and so on.
The second term is "a + d" and the eighth term is "a + 7d".
The sum of the second and eighth term is given as 52:
(a + d) + (a + 7d) = 52
Simplifying the equation:
2a + 8d = 52
Dividing both sides by 2:
a + 4d = 26
Now, to find the difference between the third terms:
The third term is "a + 2d".
The difference between the third and second term is the common difference "d".
So, d is the difference between (a + 2d) and (a + d).
d = (a + 2d) - (a + d)
d = a + 2d - a - d
d = d
Therefore, we know nothing about the difference between the third terms.
To find the values asked in the question:
i. The common difference is given as:
a + 4d = 26
4d = 26 - a
d = (26 - a)/4
ii. The first term can be found by substituting the common difference into the equation:
a + d = a + [(26 - a)/4] = (4a + 26 - a)/4 = (3a + 26)/4
iii. The 20th term can be found using the formula for the nth term of an arithmetic progression:
a_n = a + (n - 1)d
a_20 = a + 19d
Substituting the value of d:
a_20 = a + 19[(26 - a)/4]
a_20 = (81a - 494)/4
Learn more about arithmetic progression here: https://brainly.com/question/18828482
#SPJ1
a helicopter, starting from rest, accelerates straight up from the roof of a hospital. the lifting force does work in raising the helicopter. an 840-kg helicopter rises from rest to a speed of 9.5 m/s in a time of 4.0 s. during this time it climbs to a height of 7.7 m. what is the average power generated by the lifting force?
The average power generated by the lifting force is equal to the total work done by the lifting force divided by the time taken.
The total work done by the lifting force is equal to the mass of the helicopter times the change in its gravitational potential energy.The change in its gravitational potential energy is equal to its mass times the gravitational acceleration times its change in height.
Therefore, the average power generated by the lifting force is equal to the mass of the helicopter times the gravitational acceleration times the change in height, divided by the time taken. In this case, the average power is equal to 840 kg times 9.81 m/s2 times 7.7 m, divided by 4.0 s, which is equal to 203 kW. Therefore, the average power generated by the lifting force is 203 kW.
know more about Acceleration here
https://brainly.com/question/12550364#
#SPJ11
BIG BEN and a little analog alarm clock both keep perfect time. Which minute hand has the bigger angular velocity, omega ? Big Ben little alarm clock Both have the same to
The minute hand is the hand on the watch that indicates minutes. The minute hand on an analogue clock displays the current minute number from 1 to 60. When the minute hand completes one full revolution of the clock face, it has covered 360 degrees of rotation or 2π radians of angular displacement.
When both the BIG BEN and a little analog alarm clock keep perfect time, both have the same angular velocity (omega). Therefore, the answer is both have the same to.What is angular velocity?Angular velocity refers to how quickly an object rotates or moves in a circular path.
It is calculated as the angular displacement per unit time (in radians per second or degrees per second). It is defined as the rate at which a point rotates around a centre of rotation or an axis, usually expressed in radians per second or degrees per second.
What is the minute hand?The minute hand is the hand on the watch that indicates minutes. The minute hand on an analogue clock displays the current minute number from 1 to 60. When the minute hand completes one full revolution of the clock face, it has covered 360 degrees of rotation or 2π radians of angular displacement
To learn more about : clock
https://brainly.com/question/25279049
#SPJ11
a weight lifter lifts a 420-n set of weights from ground level to a position over his head, a vertical distance of 1.75 m. how much work does the weight lifter do, assuming he moves the weights at constant speed?
The work done by a weightlifter to lift a 420 N set of weights from ground level to a position over his head is 735 j.
To calculate the work done by a weightlifter who lifts a 420 N set of weights from ground level to a position over his head, a vertical distance of 1.75 m, assuming he moves the weights at a constant speed:
Use the formula given below:
W = F × d
where,
W = work done by the weightlifter
F = force applied
d = distance moved by the weightlifter
From the given data, the force applied by the weightlifter is 420 N, and the distance moved is 1.75 m.
W = 420 N × 1.75 m = 735 J
Therefore, the work done by the weightlifter is 735 J.
To know more about work click here:
https://brainly.com/question/24244140
#SPJ11
the measured nodal voltages are: find voltage and the current . 6.864 0.624 (within three significant digits) what is the power for the voltage and current source in watts?
The power for the voltage source is -6.5744 W and the power for the current source is 0.02424 W (both to three significant digits).
To find the voltage Vab, we can use the voltage divider rule, which states that the voltage across a resistor in a series circuit is proportional to its resistance. In this case, Vab is the voltage across R2 and R3 in series, so:
Vab = Vo * (R2 + R3) / (R1 + R2 + R3)
= 9.84 * (9 + 6) / (10 + 9 + 6)
= 4.608 V
To find the current Ij, we can use Kirchhoff's current law, which states that the total current flowing into a junction is equal to the total current flowing out of the junction. In this case, the current flowing into node b is equal to the current flowing out of node b, so:
Ij = (Vc - Vab) / R3
= (4.296 - 4.608) / 6
= -0.052 A
Note that the negative sign indicates that the current is flowing in the opposite direction of the assumed direction.
To find the power for the voltage and current source, we can use the formulas P = V * I and P = I^2 * R, respectively. For the voltage source, the power is:
Pvg = Va * (Vc - Va) / R1
= 16 * (4.296 - 16) / 10
= -6.5744 W
Note that the negative sign indicates that the power is being dissipated, rather than generated.
For the current source, the power is:
Pig = Ij^2 * R2 = (-0.052)^2 * 9 = 0.02424 W
To learn more about current source
https://brainly.com/question/14696285
#SPJ4
Complete question:
m mo Vs( R1 = 10 kN2 R2 =9 k12 R3 = 6 kN2 The measured nodal voltages are: Va = 16 V Vo = 9.84 V Vc = 4.296 V Find voltage Vab and the current 11. Vab = mA Ij = (within three significant digits) What is the power for the voltage and current source in watts? Pvg = Pig = (within three significant digits)
a bird grabs a clam, carries it in its beak to a considerable height, and then drops it on a rock below, breaking the clam shell. which is the correct energy conversion when the clam is dropped?
When the bird drops the clam from a height, the potential energy of the clam is converted into kinetic energy. As the clam falls, it gains kinetic energy and loses potential energy.
An object's kinetic energy is the type of energy it has as a result of motion. It is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body holds onto the kinetic energy it acquired during its acceleration until its speed changes.When the clam hits the rock, the kinetic energy is converted into other forms of energy, such as sound and heat, and the clam shell breaks.
Therefore, the correct energy conversion when the clam is dropped is from potential energy to kinetic energy, followed by a conversion of kinetic energy into other forms of energy.
To know more about bird drops
https://brainly.com/question/13613150
#SPJ4
a train is moving at a speed of 132kmph. if the length of the train is 110 meters, how long will it take to cross a railway platform 165m long?
It will take 7.50 seconds to cross a railway platform 165m long, when a train is moving at a speed of 132kmph. if the length of the train is 110 meters.
At the point when a train crosses a stage, the all out distance it covers is the amount of the length of the train and the length of the stage. The time it takes to cover this distance relies upon the speed of the train, which is given in km/h. We can change this over completely to m/s by duplicating by 1000/3600.
For this situation, the speed of the train is 132 km/h, which is around 36.67 m/s. The complete distance the train should cover is the length of the train in addition to the length of the stage, which is 110 m + 165 m = 275 m.
To ascertain the time it takes to cover this distance, we can utilize the equation: time = distance/speed. Subbing the given qualities, we get:
time = 275 m/36.67 m/s
≈ 7.50 s
Accordingly, it will require around 7.50 seconds for the train to cross the 165 m long stage, accepting that there is no postponement because of some other factors like speed increase or deceleration.
To learn more about speed and time, refer:
https://brainly.com/question/17153206
#SPJ4
describe an experiment that can measure the speed of sound using the difference between the speed of sound and that of light.
The Echo Method measures the time delay between a sound and its echo and calculates the speed of sound.
One examination that can gauge the speed of sound utilizing the distinction between the speed of sound and light is known as the Reverberation Strategy. In this examination, an amplifier is set at a known separation from a reflecting surface, for example, a structure or a precipice face. A receiver is put a separation from the amplifier, to such an extent that the time it takes for the sound to go to the reflecting surface and back to the mouthpiece can be estimated. This is finished by recording the time postpone between the first strong and the reverberation.
Then, a light source, like a laser, is pointed at a similar reflecting surface. A photodetector is put a known separation from the light source, and the time it takes for the light to make a trip to the reflecting surface and back to the photodetector is estimated. The contrast between the twice is the time it takes for the sound to head out to the reflecting surface and back to the amplifier.
By knowing the distance between the amplifier and the reflecting surface, as well as the time it takes for the sound to travel this distance, the speed of sound can be determined. Essentially, by knowing the distance between the light source and the reflecting surface, as well as the time it takes for the light to travel this distance, the speed of light can be determined. The distinction between the two paces is the speed of sound.
To learn more about Echo Method, refer:
https://brainly.com/question/29744669
#SPJ4
even though the electricity that powers them is generated primarily from burning fossil fuels, electric cars are still more efficient than gas-powered vehicles because:
Even though the electricity that powers them is generated primarily from burning fossil fuels, electric cars are still more efficient than gas-powered vehicles because they convert a higher percentage of their stored energy into kinetic energy, the energy of motion.
In comparison, gas-powered vehicles lose a significant amount of energy to heat and other forms of inefficiency through the combustion process.
Additionally, electric vehicles have regenerative braking, which captures some of the energy lost during braking and uses it to recharge the battery. This makes electric cars more energy-efficient and less polluting, even when powered by fossil fuels.
Learn more about electricity generation at
https://brainly.com/question/12985260
#SPJ4
a lighter block and a heavier block sit on a frictionless surface. please answer the following questions about the final momenta and kinetic energies of the blocks for the given situations. both blocks are initially at rest. the same force f then pushes to the right on each block for 1 meter. which block has the larger final kinetic energy after the force acts?
The heavier block has the larger final kinetic energy after the force acts.
Here's the step-by-step explanation:
1. Both the lighter and heavier blocks are initially at rest, so their initial momenta and kinetic energies are both zero.
2. The same force F is applied to each block for a distance of 1 meter.
3. Since force and distance are the same for both blocks, they will both gain the same amount of work done on them (W = F × d).
4. Work done on an object is equal to the change in its kinetic energy (W = ΔKE).
5. As both blocks have the same amount of work done on them, they will both have the same increase in kinetic energy.
6. However, the heavier block initially had a higher mass, so its final kinetic energy will be larger than the lighter block's final kinetic energy. This is because kinetic energy is directly proportional to mass (KE = 0.5 × m × v^2).
To know more about kinetic energy, refer here:
https://brainly.com/question/26472013#
#SPJ11
what is the maximum distance, in kilometers, at which the eye can resolve these two headlights at night? take the pupil diameter to be 0.4 cm.
The maximum distance at which the eye can resolve two headlights at night, given a pupil diameter of 0.4 cm, is approximately 11,937.3 meters or 11.937 kilometers.
To calculate the maximum distance at which the eye can resolve two headlights at night, we can use the formula for the angular resolution of the human eye, which is based on the Rayleigh criterion:
θ = 1.22 * (λ / D)
Where:
θ = angular resolution in radians
λ = wavelength of light (average wavelength of visible light is approximately 550 nm, or 5.5 x 10^-7 meters)
D = diameter of the aperture (pupil diameter, given as 0.4 cm or 0.004 meters)
First, calculate the angular resolution:
θ = 1.22 * (5.5 x 10^-7 m / 0.004 m) = 1.678 x 10^-4 radians
Now, to find the maximum distance (d) at which the eye can resolve two headlights, we can use the formula
d = L / tan(θ)
Where:
L = distance between the headlights (assuming a standard separation of 2 meters)
Before calculating, we need to make sure that the angular resolution (θ) is in the same unit (radians) as the tangent function requires:
θ = 1.678 x 10^-4 radians
Now, calculate the maximum distance:
d = 2 m / tan(1.678 x 10^-4) ≈ 11937.3 meters
Therefore, the maximum distance at which the eye can resolve two headlights at night, given a pupil diameter of 0.4 cm, is approximately 11,937.3 meters or 11.937 kilometers.
For more such questions on distance , Visit:
https://brainly.com/question/25825784
#SPJ11
constant force is applied to an object, causing the object to accelerate at 5.50 m/s2 . what will the acceleration be if
The acceleration will be,
a) 11.00 m/s²
b) 2.75 m/s²
c) 5.50 m/s²
d) 22.00 m/s²
According to Newton's second law, the acceleration of an object is directly proportional to the force applied and inversely proportional to its mass. Therefore,
If the force is doubled, the acceleration will also double, resulting in an acceleration of 11.00 m/s².
If the object's mass is doubled, the acceleration will be halved, resulting in an acceleration of 2.75 m/s².
If both the force and the object's mass are doubled, the acceleration will remain the same, at 5.50 m/s².
If the force is doubled and the object's mass is halved, the acceleration will be quadrupled, resulting in an acceleration of 22.00 m/s².
To know more about acceleration, here
brainly.com/question/12574295
#SPJ4
--The complete question is, A constant force is applied to an object, causing the object to accelerate at 5.50 m/s2 . What will the acceleration be if
a) The force is doubled?
b) The object's mass is doubled?
c) The force and the object's mass are both doubled?
d) The force is doubled and the object's mass is halved?--
a boy rides his bicycle 1.44 km. the wheels have radius 28.0 cm. what is the total angle (in radius) the tires rotate through during his trip?
The total angle (in radians) the tires rotate through during the trip is 2573.32 radians.
As given, a boy rides his bicycle 1.44 km. The wheels have a radius of 28.0 cm. We have to calculate the total angle (in radians) that the tires rotate through during his trip. Let us calculate the circumference of the tire with the given radius. We know that the circumference of the tire
=> 2πr= 2 × 22/7 × 28 cm
=> 176 cm
=> 1.76 meters
Now, the boy rode his bicycle for a distance of 1.44 km which is equal to 1440 meters. Let the number of times the tire rotates be N.
Then, from the above calculation, we know that the distance traveled by each tire in one rotation is the circumference of the tire. Thus the distance traveled by both tires in one rotation is
2 × 1.76 = 3.52 meters.
Therefore, the number of rotations of the tire, N = distance traveled by both the tires/distance traveled by the boy
= 1440 / 3.52= 409.09 approx.
Now, we know that in one rotation of the tire, the angle (in radians) that it rotates through is equal to 2π radians. Therefore, in N rotations, the angle rotated by the tire (in radians) is equal to 2πN.
Substituting the value of N, we have the Angle rotated (in radians)
=> 2 × 22/7 × 409.09= 2573.32 radians approx.
To learn more about Angle :
https://brainly.com/question/29506154
#SPJ11
a 0.40 kg mass is suspended from a spring, with a spring constant of 101.0 n/m. find the driving frequency which would cause resonance.
The driving frequency that would cause resonance in this mass-spring system is approximately 7.96 Hz.
Resonance occurs when the driving frequency of an external force matches the natural frequency of a system. In the case of a mass-spring system, the natural frequency is determined by the spring constant and the mass of the object attached to the spring.
The formula for the natural frequency of a mass-spring system is:
[tex]f = \frac{1}{2\pi} * \sqrt{(\frac{k}{m} )}[/tex]
Where:
f = natural frequency (in Hz)
k = spring constant (in N/m)
m = mass of the object (in kg)
π = pi, a mathematical constant approximately equal to 3.14
Given:
k = 101.0 N/m
m = 0.40 kg
Plugging in the values:
[tex]f = \frac{1}{2\pi} * \sqrt{(\frac{101.0}{0.40} )}[/tex]
[tex]f = (\frac{1}{2*3.14}) * \sqrt{(\frac{101.0}{0.40} )}[/tex]
f ≈ 7.96 Hz (rounded to two decimal places)
To know more about spring constant
brainly.com/question/14159361
#SPJ4
when we suddenly drop a heavy weight on a spring scale, the needle on the scale jumps and oscillates four times in exactly 2 s. what does this mean? (select all that apply.)
A heavy weight dropped suddenly on a spring scale makes the needle jump and oscillate four times in exactly 2 s. This means that The natural frequency is exactly 2rad/s, and The spring scale is underdamped. The correct answers are options b and c.
When a heavy object is suddenly dropped on a spring scale, it will produce an oscillation in the spring scale, making the needle jump and oscillate several times in a period of time.
When the needle jumps and oscillates four times in 2 s, we can deduce that the frequency of oscillation is 2 Hz.
The spring scale is underdamped since the needle oscillates several times before coming to rest, indicating that there is some damping in the system, but not enough to keep the system from oscillating.
The natural frequency is exactly 2rad/s. This is because the frequency of oscillation is directly proportional to the square root of the stiffness of the spring and inversely proportional to the mass of the object attached to the spring.
Therefore, options b and c are correct.
For more such questions on spring scale, click on:
https://brainly.com/question/30015441
#SPJ11
consider a conducting bar that is free to slide along conducting rails in an upward magnetic field as shown in the diagram below. if we connect the rails to the battery shown, which way will the bar be pushed?
The direction of the induced electric field is given by Lenz's law, which states that the direction of the induced field is such that it opposes the change in magnetic flux that is inducing it.
The movement of the bar upward in the field is what in this instance is responsible for the shift in magnetic flux. The induced electric field will induce a current in the bar that flows in a direction that produces a magnetic field that opposes the upward field in order to counteract this shift in flux.
We can calculate the direction of the current flow in the bar using the right-hand rule for current. Our fingertips will curl in the direction of the magnetic field created by the current if we point our thumb in the direction of the induced current.
For such more question on magnetic flux:
https://brainly.com/question/16234377
#SPJ11
The work of Warren Washington would be most likely to explain wich of the following phenomena
Gradual shift of North Magnetic Pole's position on Earth, steady rise in planet's average temperature and reduction in the Moon's light reflection.
What does Warren Washington create?Using climate models, Dr. Washington and his team were able to simulate the effects of physics on a number of weather-related factors, such as "how heat energy, water vapor, and chemicals travel between Earth's seas and the atmosphere." Following that, computers used data from climate models to predict changes in the atmosphere.
These models were utilised to back the 2007 Intergovernmental Panel on Climate Change (IPCC) report's findings that human behaviour directly affects the environment.
Dr. Washington and his group received the 2007 Nobel Peace Prize3 as a result.
To know more about Warren Washington, refer
https://brainly.com/question/19930662
#SPJ1
Note: The question given on the portal is incomplete. here is the complete question.
Question: The work of Warren Washington would be most likely to explain which of the following phenomena
Gradual shift of North Magnetic Pole's position on Earth
Steady rise in planet's average temperature
Reduction in the Moon's light reflection.
Increase in Moon light's reflection.
after running three trials with a fan cart, which has a mass of 480 g, on a horizontal track you have collected the following data. trial 1 trial 2 trial 3 acceleration from x-t graph (m/s2) 0.642 0.622 0.651 acceleration from v-t graph (m/s2) 0.618 0.664 0.604 120 g is added to the cart and it is placed at rest on a track inclined at 4.5o (with respect to the horizontal). the fan is set to push the cart up the incline. will the cart accelerate up the incline, down the incline, or remain at rest? explain fully.
Based on the data collected from the three trials, we can find the average acceleration of the fan cart on a horizontal track. To do this, we will calculate the mean of the six acceleration values provided:
(0.642 + 0.622 + 0.651 + 0.618 + 0.664 + 0.604) / 6 = 3.801 / 6 = 0.634 m/s^2
Now, the mass of the fan cart is 480 g, which we will convert to kg:
480 g * (1 kg / 1000 g) = 0.48 kg
After adding 120 g to the cart, the new mass becomes:
0.48 kg + (120 g * 1 kg / 1000 g) = 0.48 kg + 0.12 kg = 0.60 kg
Next, we need to determine the gravitational force acting on the cart along the incline. This can be calculated using the formula:
F_gravity = m * g * sin(theta)
where m is the mass of the cart, g is the gravitational constant (approximately 9.81 m/s^2), and theta is the angle of inclination.
F_gravity = 0.60 kg * 9.81 m/s^2 * sin(4.5°) ≈ 0.60 kg * 9.81 m/s^2 * 0.078 ≈ 4.72 N
Now, we'll calculate the force exerted by the fan using the formula:
F_fan = m * a
where m is the mass of the cart, and a is the average acceleration calculated earlier.
F_fan = 0.60 kg * 0.634 m/s^2 ≈ 0.38 N
Since the gravitational force (4.72 N) is greater than the force exerted by the fan (0.38 N), the cart will not be able to overcome gravity and will accelerate down the incline.
To Learn More About Acceleration
https://brainly.com/question/460763
#SPJ11
Observing a set of pith balls with positive charges, how does the distance between the pith balls affect the electric electrical charge?
The greater the distance between the pith balls, the lesser the amount of electric charge that exists between them.
The distance between the pith balls will not affect the electric charge.
The lesser the distance between the pith balls, the greater the amount of electric charge that exists between them.
The greater the distance between the pith balls, the greater the amount of electric charge that exists between them.
The greater distance between the pith balls, the lesser the amount of electric charge that exists between them.
What happens when a pith ball is positively charged?When silk is used to rub a glass rod, some electrons are removed from the rod. As a result, the rod acquires a positive charge. Two pith balls are positively charged when a positively charged rod is touched to them.
How do the pith balls' charges impact the electrostatic force that exists between them?The pith balls are charged and brought into contact with one another. They charge equally and repel one another. The level of repulsion of the hung pith ball varies as the position of the movable pith ball is altered.
To know more about charge visit:-
https://brainly.com/question/11944606
#SPJ1
Answer:
(Question) Which of the following statements about electrical charges is true?
(Answer) Two positive charges repel each other.
(Question) Observing a set of pith balls with positive charges, how does the distance between the pith balls affect the electric electrical charge?
(Answer) The greater the distance between the pith balls, the greater the amount of electric charge that exists between them.
(Question) Which of the following interactions in the data set below will have an attractive electrical force?
(Answer) Interaction A and B
(Question) in which of the following interactions will the amount of force between the two objects be the strongest?
(Answer) Interaction A
(Question) Which of the following statements accurately reflects the relationship between force and distance in Coulomb’s Law?
(Answer) They are inversely proportional; as distance increases, the force between two charges will decrease.
Explanation:
i just finished the quick check