A 9.00 kg mass is moving to the right with a velocity of 14.0 m/s. A 12.0 kg mass is moving to the left with a velocity of 5.00 m/s. Assuming that these two balls have a head on collision and stick together, what will be the final velocity of the combination? (3.1 m/s)

Answers

Answer 1

Answer:

5.95 m/s to the right

Explanation:

Before the collision, the momentum of the system is given by:

p = m1v1 + m2v2

p = (9.00 kg)(14.0 m/s) + (12.0 kg)(-5.00 m/s)

p = 125.0 kg m/s (to the right)

During the collision, the two masses stick together, so their final velocity will be the same. Let's call this final velocity vf. The momentum of the system after the collision is given by:

p' = (m1 + m2)vf

p' = (9.00 kg + 12.0 kg)vf

p' = 21.0 kg vf

Since momentum is conserved in the collision (there are no external forces acting on the system), we can set p = p' and solve for vf:

125.0 kg m/s = 21.0 kg vf

vf = 5.95 m/s (to the right)

Therefore, the final velocity of the combined masses after the collision is 5.95 m/s to the right.


Related Questions

an object is placed at a distance greater than twice the focal length in front of a concave mirror, as shown. which choice best describes the image?

Answers

Explanation:

The option that best describes the image when an object is placed at a distance greater than twice the focal length in front of a concave mirror is:

"An inverted image which is smaller than the object and located between the focal point and the center of curvature of the mirror.

"When an object is placed at a distance greater than twice the focal length in front of a concave mirror, a virtual, upright, and magnified image is formed.

As per the rules of concave mirrors, when an object is placed beyond the center of curvature, an inverted and real image is produced.

As a result, option (A) is incorrect.

When the object is placed at the center of curvature, the size of the image is equal to that of the object, and it is inverted.

As a result, option (C) is incorrect.

When an object is placed at a distance that is less than twice the focal length, the image formed is virtual, erect, and magnified.

As a result, option (D) is incorrect.

To know more about Concave mirror here :

https://brainly.com/question/3555871

#SPJ11

A torque of 77.7 Nm causes a wheel to start from rest, completes 5.55 revolutions and attains a final angular velocity of 88.8
rad/sec. What is the moment of inertia of the wheel?

Answers

The moment of inertia of the wheel is gotten to be I = 41.2 kg.m²

Calculation of Moment of inertia.

Angular displacement = 5.55 revolutions × 2π radians/revolution

Angular displacement = 34.9 radians

Angular acceleration:

Angular acceleration = (final angular velocity - initial angular velocity) / time

Angular acceleration = (88.8 rad/sec - 0 rad/sec) / 0 s

Angular acceleration = 88.8 rad/sec²

Moment of inertia.

Moment of inertia = (torque × angular displacement) / angular acceleration

Moment of inertia = (77.7 Nm × 34.9 radians) / 88.8 rad/sec²

Moment of inertia = 41.2 kg.m²

Learn more about the Moment of inertia here:

https://brainly.com/question/14460640

#SPJ1

the reason that the primary mirror of an astronomical telescope is often shaped and polished to a parabolic shape is

Answers

The primary mirror of an astronomical telescope is often shaped and polished to a parabolic shape because a parabolic shape allows for the mirror to collect the most amount of light and focus the parallel rays of light to a single point for better image clarity.


The reason that the primary mirror of an astronomical telescope is often shaped and polished to a parabolic shape is to reduce spherical aberration.

What is an astronomical telescope?An astronomical telescope is an optical instrument that aids in the observation of remote objects by collecting electromagnetic radiation such as visible light. It consists of two primary components: a primary mirror or lens that gathers and focuses light, and an eyepiece or camera that magnifies and projects the image formed by the primary.

A parabolic shape is a mirror or lens that has a curve that is more curved in the center than at the edges, and it is often used in astronomical telescopes to reduce spherical aberration. Spherical aberration is an optical defect that causes the image of a point source to become fuzzy and blurred. It occurs when the rays passing through the edges of a spherical lens or mirror become focused at a different distance than those passing through the center. This causes the image to be blurred around the edges, which makes it difficult to view small or distant objects. Parabolic mirrors are used to correct this problem because they are designed to focus all incoming light to a single point, resulting in a sharper and clearer image.

For more details about spherical aberration, click on below link:

https://brainly.com/question/13089079

#SPJ11

Critical Thinking
depth (km)
1000-
2000-
3000
0
5
Lesson
10
speed (km/s)
11 Plot A scientist has gathered the following
data for P-wave speeds with depth: 8 km/s at
200 km, 11 km/s at 700 km, 12 km/s at 1,400
km, 13 km/s at 2,200 km, 13.9 km/s at 2,900
km, and 8.5 km/s at 2,901 km. Plot these
points on the graph, and add a title.
15
12 Analyze Connect your points and describe
any trends you see in the graph.
13 Infer Why does the speed drop so
dramatically after 2,900 km?

It’s just the questions 11,12,13 in the photo

Answers

According to the information, the speed increases up to 2,900 kilometers deep and then drops because the pressure is higher.

What trend is seen according to the points?

According to the information of the points we can infer that the speed gradually increases up to 2900 km depth. Once it exceeds this depth, it falls radically to 8.5 km/s (a little higher than the initial speed).

Why does his speed decrease radically?

Its speed decreases radically because it exceeds the depth of 2900 km where the pressure is greatest.

Learn more about waves in: https://brainly.com/question/29334933

#SPJ1

A mass loaded spring is displaced 5 cm below its equilibrium position and then released, it travels from the lowest point to the highest point within 0.25 sec. Determine, the maximum time required for the system to oscillate from 5cm below the equilibrium position to 3cm above equilibrium position.​

Answers

Answer:

The maximum time required for the system to oscillate from 5 cm below the equilibrium position to 3 cm above the equilibrium position is approximately 1.309 seconds.

Explanation:

The time period (T) of a mass-spring system is given by:

T = 2π√(m/k)

where m is the mass attached to the spring, and k is the spring constant.

Given that the spring is displaced 5 cm below its equilibrium position and travels from the lowest point to the highest point within 0.25 sec. This means that the time period of the system is:

T = 2(0.25) = 0.5 sec

Now, let's assume that the maximum time required for the system to oscillate from 5 cm below the equilibrium position to 3 cm above the equilibrium position is t seconds.

So, the time taken for the system to move from the lowest point to 3 cm above the equilibrium position is (t/2) seconds.

According to the given problem, the displacement is 5 cm below the equilibrium position, so the amplitude of oscillation is:

A = (5 + 3) / 2 = 4 cm

Now, using the formula for time period, we get:

T = 2π√(m/k) ---- (1)

We know that the maximum displacement (amplitude) of oscillation, A = 4 cm. This can be expressed in terms of mass and spring constant as:

A = (m * g) / k ---- (2)

where g is the acceleration due to gravity.

Squaring equation (2) and solving for m/k, we get:

(m/k) = (A * k) / g)^2 ---- (3)

Substituting equation (3) into equation (1), we get:

T = 2π√[((A * k) / g)^2] ---- (4)

Simplifying equation (4), we get:

T = 2π * (A / g) * √(1/k) ---- (5)

Now, substituting the values of T, A, and g into equation (5), we get:

0.5 = 2π * (4 / 9.8) * √(1/k)

Simplifying this equation, we get:

√(k) = 2π * (4 / 9.8) / 0.5

√(k) = 10.239

k = 105

So, the spring constant is 105 N/m.

Now, substituting the value of k into equation (3), we get:

(m/k) = (A * k / g)^2

(m/k) = (4 * 105 / 9.8)^2

(m/k) = 73.88

So, the mass attached to the spring is:

m = (73.88) * (105)

m = 7757.4 g

m = 7.7574 kg

Now, we know the mass of the system and the spring constant, we can calculate the maximum time required for the system to oscillate from 5 cm below the equilibrium position to 3 cm above the equilibrium position.

The time period (T) of the system is given by:

T = 2π√(m/k)

T = 2π√(7.7574/105)

T = 1.309 sec (approx)

Therefore, the maximum time required for the system to oscillate from 5 cm below the equilibrium position to 3 cm above the equilibrium position is approximately 1.309 seconds.

predict the direction of the force exerted on the wire by the magnet when the circuit is closed. explain.

Answers

When the circuit is closed, the direction of the force exerted on the wire by the magnet is to the left.

What is a magnet?

A magnet placed near a wire creates a magnetic field. A wire carrying a current produces a magnetic field around it. These two fields interact, resulting in a force on the wire that is perpendicular to both the magnetic field of the magnet and the current in the wire. When the circuit is closed, a current is flowing through the wire. The current direction is shown in the picture below.

When a current-carrying wire is placed in a magnetic field, a force is exerted on the wire. The force is perpendicular to both the direction of the magnetic field and the direction of the current in the wire. The force is proportional to the strength of the magnetic field, the current in the wire, and the length of the wire within the magnetic field.

When the current flows, a magnetic field is produced around the wire that points upwards, as shown by the green arrows. When the magnetic field of the magnet is also taken into account, the direction of the force exerted on the wire is to the left, as shown by the blue arrow. Therefore, the answer is that when the circuit is closed, the direction of the force exerted on the wire by the magnet is to the left.

To know more about magnetic fields:

https://brainly.com/question/11514007

#SPJ11

The magnetic flux is changing as it passes through two coils that are exactly the same. The induced voltage is greatest in the coil whose flux is changing fastest.
True
False

Answers

Through the coil, the magnetic flux rises. The coil will experience a voltage as a result. This voltage will cause a current to flow. The amount of the emf increases with speed and is 0 in the absence of motion.

What occurs when a wire coil is positioned in a fluctuating magnetic field?

A current will be induced in a coil of wire if it is exposed to a shifting magnetic field. Because of an electric field that is being generated, which drives the charges to move around the wire, current is flowing.

What does a coil's magnetic flux look like when a unit current passes through it?

Self-Inductance: When current passes through a coil, a magnetic field and consequent magnetic flux are created.

To know more about magnetic flux visit:-

brainly.com/question/30858765

#SPJ1

As a boat moves through water, it experiences drag, which is similar to air resistance. Does drag slow the boat down or speed it up?

Answers

Answer:

Whether the object or fluid is moving, drag occurs as long as there is a difference in their velocities. Because it is resistant to motion, drag tends to slow down the object. An effective way to reduce it is to alter the shape of the object and make it streamline. Drag Force Examples of Drag Force

Explanation:

if the retina is 1.7 cm from the lens in the eye, how large is the image on the retina of a person of height 1.8 m standing 8.0 m away?

Answers

The image size on the retina of a person of height 1.8 m standing 8.0 m away is: 0.094 cm.

The size of the image on the retina of a person of height 1.8 m standing 8.0 m away is determined by the size of the object, the distance between the object and the lens, and the distance between the lens and the retina.

The image size on the retina is inversely proportional to the distance between the object and the lens and is directly proportional to the distance between the lens and the retina. In this case, the object is 1.8 m away and the lens is 1.7 cm from the retina.

Therefore, the image size on the retina is (1.7 cm/1.8 m) times 8.0 m, or 0.094 cm. This means that the image size on the retina of a person of height 1.8 m standing 8.0 m away is 0.094 cm.

To know more about retina refer here:

https://brainly.com/question/13993307#

#SPJ11

Two identical metallic spheres of charges q1and q2 are placed at a distance of 45 m in air. They are bought in contact and then separated and kept at the same distance . They now repel with a force of 0.1 N . What is the charge now on each sphere?

Answers

The charge on each sphere after they are separated is [tex]4.71 × 10^-7 C.[/tex]

The initial electrostatic force between the two spheres before they come in contact is given by Coulomb's law:

[tex]F = k(q1)(q2) / r^2[/tex]

where F is the electrostatic force, k is Coulomb's constant (9 × [tex]10^9[/tex] [tex]N·m^2/C^2)[/tex], q1 and q2 are the charges on the spheres, and r is the distance between them.

Since the two spheres are identical, we can assume that they have the same charge q before they come in contact. Therefore, we can rewrite Coulomb's law as:

[tex]F = kq^2 / r^2[/tex]

After the spheres come in contact and then are separated again, their charges are redistributed. Since the spheres have the same charge initially and they are identical, we can assume that they now have equal charges q'. The final electrostatic force between the spheres is also given by Coulomb's law:

[tex]F' = k(q')^2 / r^2[/tex]

We know that the final force is 0.1 N, and the initial distance between the spheres is 45 m. We can use these values to find the initial charge q:

[tex]0.1 N = kq^2 / (45 m)^2[/tex]

[tex]q^2 = (0.1 N)(45 m)^2 / k[/tex]

[tex]q = sqrt[(0.1 N)(45 m)^2 / k][/tex]

Substituting the values, we get:

q = 6.67 × 10^-7 C

Now that we know the initial charge q, we can use Coulomb's law to find the final charge q':

[tex]0.1 N = k(q')^2 / (45 m)^2[/tex]

[tex]q' = sqrt[(0.1 N)(45 m)^2 / k][/tex]

Substituting the values, we get:

q' = 4.71 × 10^-7 C

To learn more about Coulomb's law visit;

https://brainly.com/question/506926

#SPJ9

A long solenoid has 100 turns/cm and carries current i. an electron moves within the solenoid in a circle of radius 2.30 cm perpendicular to the solenoid axis. the speed of the electron is 0.0460c (c speed of light). find the current i in the solenoid.

Answers

The current in the solenoid becomes 3.56 A.

How to find current in the solenoid?

Number of turns in the solenoid, n = 100 turns/cm

Radius of the circular path of electron, r = 2.30 cm

Speed of electron, v = 0.0460c, where c is the speed of light

To find: Current in the solenoid, i

Formula used: Magnetic field inside the solenoid,

B = μ0ni Where, μ0 = 4π × 10⁻⁷ T m/A is the permeability of free spaceSolution:

The force on a moving electron in a magnetic field is given by

F = Bev

Where B is the magnetic field, e is the charge of an electron and v is its velocity.

The force acting on the electron provides the necessary centripetal force for the electron to move in a circle of radius r.

So,

Bev = (mev²)/r

where me is the mass of an electron

On simplifying the above equation, we get

Be = (mev)/r

Put the value of B from the formula of magnetic field inside the solenoid, B = μ0ni

we get

μ0ni = (mev)/r

Solve for i,

i = (mev)/(μ0nr)

Substitute the given values and solve

i = (9.109 × 10⁻³¹ kg × 0.0460c × 3 × 10⁸ m/s)/(4π × 10⁻⁷ T m/A × 100 turns/cm × 2.30 cm)i

= 3.56 A

Therefore, the current in the solenoid is 3.56 A.

Learn more about Magnetic field.

brainly.com/question/14848188

#SPJ11

next is the retrosynthesis of the alcohol precursor from an alkene. choose the best option for the intermediate needed to make the alcohol precursor.

Answers

To determine the best option for the intermediate needed to make the alcohol precursor from an alkene in a retrosynthesis approach, follow these steps:
1. Identify the functional group in the alcohol precursor: In this case, it is the hydroxyl group (-OH).
2. Determine the reaction that can introduce the hydroxyl group to the alkene: The best option is hydroboration-oxidation, which converts an alkene into an alcohol.
3. Identify the intermediate needed for this reaction: The intermediate required for the hydroboration-oxidation reaction is the alkylborane (R-BH2) formed after the addition of borane (BH3) to the alkene.

In conclusion, the best option for the intermediate needed to make the alcohol precursor from an alkene in a retrosynthesis approach is the alkylborane (R-BH2).

To know more about "Retrosynthesis" refer here:

https://brainly.com/question/16987531#

#SPJ11

what could the maxwell equation below be used for? select the correct answer select this answer if none of the choices are valid your answer to predict the electric field in a region of space containing many charged particles to predict what currents need to flow through wires to produce a certain electric field to predict the magnetic field in a region of space in which the electric flux is changing to predict the magnetic flux through a closed surface

Answers

The Maxwell equation ∇ × E = -∂B/∂t can be used to predict the magnetic field in a region of space in which the electric flux is changing.

The Maxwell equation ∇ × E = -∂B/∂t is one of the four Maxwell equations that describe the behavior of electric and magnetic fields. It relates the curl of the electric field to the time rate of change of the magnetic field. In other words, it describes how a changing electric field creates a magnetic field.

This equation is important in the study of electromagnetic waves, which are generated by changing electric and magnetic fields. When an electric field changes in time, it creates a magnetic field, which then creates an electric field, and so on, creating a self-sustaining wave.

The equation can be used to predict the behavior of electromagnetic waves in space, as well as the behavior of electric and magnetic fields in the presence of each other.

To know more about Maxwell equation, refer here:

https://brainly.com/question/28956380#

#SPJ11

what approximate wind direction, speed, and temperature (relative to isa) should a pilot expect when planning for a flight over emi at fl 270?

Answers

The wind direction, speed, and temperature that a pilot should expect when planning for a flight over EMI at FL 270 are as follows:

Wind direction: 240 degrees True

Wind speed: 25 knots

Temperature: -10 degrees Celsius

EMI is a waypoint in the North Atlantic Track System, located in the middle of the ocean. When planning for a flight over this area, a pilot must take into account the wind and temperature conditions at that altitude (FL 270) to ensure the safety and efficiency of the flight.

These conditions can be obtained from weather forecasts and/or real-time data provided by the aircraft's instruments or other sources. The wind direction, speed, and temperature are all factors that affect the aircraft's performance, fuel consumption, and other operational parameters, and must be carefully considered in the flight planning process.


Learn more about aircrafts here:


https://brainly.com/question/15800677#


#SPJ11

two pulse waves of equal and opposite amplitude move toward each other on a cord. after they interfere with each other, what happens to the waves?

Answers

The waves will cancel each other out and no waves will remain. If two waves of the same frequency, but different amplitudes, interfere with each other, the resulting wave will have an amplitude equal to the sum of the two wave amplitudes.

What are pulse waves?

Pulse waves are pressure waves that are created as the heart pumps blood throughout the body. They are detected through pulse points, such as on the wrists, neck, or temples. Pulse waves can be measured using a device called a pulse oximeter, which uses a sensor to detect the pressure of the pulse wave.

Pulse waves can provide information about a person’s heart rate and oxygen saturation levels.

Learn more about pulse waves here:

https://brainly.com/question/26701631
#SPJ1

the plane is flying at 800 miles per hour. how far will the package travel horizontally during its descent?

Answers

The distance that a package will travel horizontally during its descent when a plane is flying at 800 miles per hour can be calculated using the following steps is 1600 miles.

What is the distance?

Determine the time taken for the package to hit the ground. We know that when an object is dropped from a certain height, it falls under the influence of gravity.

The acceleration due to gravity is 9.8 m/s². The formula for the time taken for an object to fall can be given by:

t = √(2h/g)

where, t is the time taken for the object to fall is the height from which the object was dropped g is the acceleration due to gravity.

We know that the distance traveled by the package horizontally can be given by d = vt

where, d is the distance traveled horizontally by the package v is the velocity of the planet is the time taken for the package to hit the ground.

Thus, the distance is 1600 miles.

Read more about Distance here:

https://brainly.com/question/15172156

#SPJ11

a syringe containing an incompressible fluid is oriented vertically and the plunger slowly depressed. at which point is the kinetic energy the lowest?

Answers

The point at which the kinetic energy is lowest is 3 in the syringe containing an incompressible fluid that is vertically oriented and the plunger is slowly depressed.


What is kinetic energy?

The kinetic energy of an object is the energy it has due to its motion. When an object is in motion, it has kinetic energy. It is a scalar quantity that is proportional to the mass of the object and the square of its velocity. The formula for kinetic energy is given as follows:

                                KE = 1/2mv²

Where m is the mass of the object and v is its velocity.

Points 1 and 2 have higher kinetic energy because the incompressible fluid is still being compressed in the syringe. Point D is incorrect because the kinetic energy of the incompressible fluid is not the same at all three points. Point E is incorrect because enough information has been provided. Therefore, when a syringe containing an incompressible fluid is vertically oriented and the plunger is slowly depressed, the kinetic energy is lowest at point 3.

Learn more about kinetic energy at https://brainly.com/question/25959744

#SPJ11

a 5 kg toy train car is connected to a 3 kg toy train car. the 3 kg car is given an external force of 16 n. what is the tension in the rope connecting the cars?

Answers

A 5 kg toy train car is connected to a 3 kg toy train car. the 3 kg car is given an external force of 16 n. the tension in the rope connecting the two cars is 29 N.

The tension in the rope connecting two toy train cars A toy train car with a mass of 5 kg is connected to a toy train car with a mass of 3 kg. An external force of 16 N is applied to the 3 kg car.

Tension in the rope between the two toy cars is what we need to calculate. According to Newton’s 2nd law, force equals mass multiplied by acceleration. If the two cars are moving in the same direction with the same acceleration, the tension in the rope can be calculated as follows:

Force acting on the two cars is the external force that is applied on the 3 kg car which is equal to 16 N. In this case, both cars will have the same acceleration.

for such more question on tension

https://brainly.com/question/24994188

#SPJ11

Two wires cross, one carrying current to the east and the other to the north. The force between the two wires is_____ O repulsive. Ozero. O attractive.

Answers

Attractive

Explanation:

Like poles repel

And

Unlike poles attract

the period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of m; a restoring force constant k with dimensions of ml2t2 , and the amplitude a, with dimensions of l. dimensional analysis shows that the period of oscillation should be proportional to

Answers

The correct option is C, The period of oscillation should be proportional to A^-1 square root of m/k.

mass m, with dimensions of M

force constant k with dimensions of ML^-2T^-2

amplitude A, with dimensions of L

To find the relation for period of oscillation with dimension T

To get the dimension T from m,k and A

[tex]1/A*\sqrt{(m/k)} = 1/L*\sqrt{(M/ML^{-2}T^{-2}) }= 1/L*LT = T[/tex]

Oscillation refers to the repetitive variation of a physical quantity around a central value or equilibrium position. It is a common phenomenon in many natural and man-made systems, ringing from simple pendulums and springs to complex electrical circuits and biological processes.

In an oscillating system, the physical quantity, such as displacement, velocity, or current, continuously changes between maximum and minimum values with a fixed frequency and amplitude. The frequency of oscillation is the number of cycles per unit time, usually measured in Hertz (Hz), while the amplitude is the maximum deviation from the equilibrium position. Oscillations can be periodic, where the motion repeats itself exactly over a fixed time interval, or non-periodic, where the motion is irregular and unpredictable.

To learn more about Oscillation visit here:

brainly.com/question/30111348

#SPJ4

Complete Question: -

The period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of M; a restoring force constant k with dimensions of ML^-2T^-2 and the amplitude A, with dimensions of L. Dimensional analysis shows that the period of oscillation should be proportional to

a) A square root of m/k b) A^2 m/k c) A^-1 square root of m/k d) (A^2k^3)/m

g if the hole is 5.6 m from a 1.9- m -tall person, how tall will the image of the person on the film be?

Answers

If the hole is 5.6 m from a 1.9- m -tall person then, the image of the person on the film will be: 0.63m tall

The image height of the person on the film can be determined by using the magnification formula. The magnification formula is given as: m=-i/o Where m is the magnification of the image, i is the height of the image, and o is the distance of the object from the lens.

Now, the height of the person is 1.9m and the distance of the hole from the person is 5.6m, so we can determine the distance of the object from the lens, which is given as:o=5.6+1.9o=7.5m. Since the distance of the object from the lens has been determined, the magnification of the image can now be determined.

Using the magnification formula: m=-i/o Where i is the height of the image and o is the distance of the object from the lens. [tex]m=-i/o=-(1.9m)/7.5m= -0.2533[/tex]

We can now use the magnification formula to determine the height of the image. Rearranging the formula: [tex]i=m*o= (-0.2533) * 7.5mi=-1.9m * 0.2533i=-0.63m[/tex]

Therefore, the image height of the person on the film is 0.63m.

To know more about the magnification formula refer here:

https://brainly.com/question/3480304#

#SPJ11

which is the proper order of structures through which light must pass in order to perceive and image?

Answers

The proper order of structures through which light must pass in order to perceive and image is cornea, aqueous humor, lens, vitreous humor, retina.

These are the five main structures of the human eye that enable vision, including light perception and imaging. Let's delve into each of these structures.

Cornea: The clear, protective outer layer of the eye is the cornea. The cornea has two purposes: to shield the inner eye from harm and to help focus light on the retina at the back of the eye.

The cornea's curved shape bends light waves as they enter the eye, assisting in their concentration.

Aqueous humor: This is a liquid that flows throughout the front of the eye, nourishing and removing waste from its surrounding tissues.

It aids in the maintenance of normal eye pressure, and if this pressure becomes too high, it can lead to glaucoma.

Lens: The lens' job is to concentrate light onto the retina. It's a transparent structure with a biconvex (lens-like) shape that varies in thickness.

It is supported by ciliary muscles that allow it to alter shape when we focus on things at different distances.

Vitreous humor: This gel-like substance fills the eye's posterior (rear) cavity, providing it with structural stability and helping it to maintain its form. It also assists in light refraction.

Retina: This is a thin layer of tissue lining the rear of the eye. The retina's photoreceptor cells, or rods and cones, are sensitive to light.

The retina converts light energy into neural signals that are transmitted to the brain via the optic nerve, which is located behind the eye. The brain translates these signals into images, allowing us to see.

What we see when we open our eyes is formed by light. In order to perceive an image, light must pass through a series of structures in the eye.

The cornea, aqueous humor, lens, vitreous humor, and retina are the five main structures of the human eye that enable vision, including light perception and imaging.

to know more about light refer here:

https://brainly.com/question/29994598#

#SPJ11

tom has a 4-inch refracting telescope and steve has a 3-inch reflecting telescope. whose telescope has a higher resolving power?

Answers

Tom's 4-inch refracting telescope has a higher resolving power.


Refracting telescopes have higher resolving power than reflecting telescopes, as the size of the objective lens in a refractor can be larger than the size of the mirror in a reflector.

Resolving power is the ability of a telescope to distinguish between two closely spaced objects. It is determined by the diameter of the telescope's objective lens or mirror. The resolving power is proportional to the diameter of the objective, so a larger objective will have a higher resolving power.

Therefore, Tom's 4-inch refracting telescope has a higher resolving power than Steve's 3-inch reflecting telescope.


To know more about resolving power click here:

https://brainly.com/question/913003

#SPJ11

a ball with a mass of 2.20 kg is moving with velocity (6.60i-2.40j) m/s. find the net work on the ball if its velocity changes to (8i 4.00j)m/s

Answers

The net work on the ball if its velocity changes to (8i 4.00j)m/s is 27.60 Joules.

Using the work-energy principle, we know that the net work done on the ball is equal to the change in its kinetic energy.

To find the change in kinetic energy, we need to calculate the ball's final velocity and its initial velocity, and then use the formula:

Change in Kinetic Energy = (1/2) x mass x (final velocity)² - (1/2) x mass x (initial velocity)²

The net work done on the ball is 27.60 Joules.

So, when the ball changes its velocity from (6.60i-2.40j) m/s to (8i+4.00j) m/s, the net work done on it is 27.60 Joules.

To practice more questions about 'net work done':

https://brainly.com/question/30668135

#SPJ11

a person weighing 799 n stands on a scale in an elevator. the elevator is accelerating upwards with an acceleration 0.47 m/s2. what is the reading on the scale? give your answer in newtons to at least three digits.

Answers

The reading on the scale is 838.29 N.

To determine the reading on the scale, use the following formula:

F = ma

where F is force, m is mass, and a is acceleration.

The weight of the individual can be determined using the formula:

W = mg

where W is weight, m is mass, and g is the acceleration due to gravity, which is 9.81 m/s².

The given acceleration is 0.47 m/s². The weight of the individual is W = mg,

where m = 799 N / 9.81 m/s² = 81.38 kg

W = 81.38 kg x 9.81 m/s² = 798.11 N.

To calculate the reading on the scale, we'll have to add the force the scale must apply to support the individual's weight to the weight of the person's mass multiplied by the acceleration:

Reading on the scale = 798.11 N + 81.38 kg x 0.47 m/s² = 838.29 N, rounded to three digits.

Therefore, the reading on the scale is 838.29 N to at least three digits.

Learn more about acceleration here: https://brainly.com/question/460763.

#SPJ11

a person trying to lose weight (dieter) lifts a 10 kg mass, one thousand times, to a height of 0.5 m each time. assume that the potential energy lost each time she lowers the mass is dissipated, (a) how much work does she do against the gravitational force? (b) fat supplies 3.8 x 107j of energy per kilogram which is converted to mechanical energy with a 20% efficiency rate. how much fat will the dieter use up?

Answers

A dieter lifting a 10 kg mass 1000 times to a height of 0.5m each time does 49.05 J of work per lift, resulting in the total amount of work done and fat burned is calculated by total amount of energy.

(a) The amount of work done against the gravitational force is calculated by using the formula:

W = m*g*h

where m is the mass,

g is the acceleration due to gravity, and

h is the height.

The person lifts a 10 kg mass to a height of 0.5 meters, so the work done each time is:

[tex]W = (10 kg) * (9.8 m/s^2) * (0.5 m) = 49 Joules.[/tex]

The total work done against the gravitational force is:

[tex]W_{total}= (49 J) * (1000) = 49,000 J.[/tex]

(b) To calculate the amount of fat burned, we need to find the total amount of energy expended and divide it by the efficiency rate and the energy per kilogram of fat.

The total amount of energy expended by the person is:

[tex]E_{total} = W_{total} = 49,000 J.[/tex]

The efficiency rate is 20%, which means that 20% of the expended energy is converted to mechanical energy.

The energy per kilogram of fat is [tex]3.8*10^7[/tex] Joules/kg.

Therefore, the amount of fat burned is:

Fat burned = [tex]E_{total}[/tex] / (efficiency rate * energy per kg of fat)

Fat burned = 49,000 J / (0.2 * 3.8 x 10⁷ J/kg)

Fat burned = 0.0645 kg of fat (or 64.5 grams of fat).

So, the person will burn approximately 64.5 grams of fat by lifting a 10 kg mass 1000 times to a height of 0.5 meters each time.

Also the total work done against gravitational force is 49,000J.

To Practice for 'mechanical energy':

https://brainly.com/question/29803154

#SPJ11

Why is momentum not conserved in real life situations

Answers

Momentum is not always conserved in real-life situations because external forces can act on a system and change its momentum.

For example, when two cars collide, friction and air resistance can cause the momentum of the system to change. Similarly, when a ball is thrown in the air, gravity and air resistance act on it and cause its momentum to change. Other factors such as deformation, energy loss, and imperfect collisions can also cause momentum to be lost or gained. Therefore, while momentum is a useful concept in physics, it is important to consider the impact of external factors when analyzing real-world situations.

To know more about momentum, here

brainly.com/question/30677308
#SPJ4

what is the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg in n?

Answers

The magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg is 981 N.

To determine the magnitude of the force on the child, we must find the magnitude of the centripetal acceleration of the child at the low point first. We can use the equation:

[tex]a_{c}[/tex] = [tex]\frac{v^{2} }{r}[/tex]

where v = 9 m/s and r = 2 m

thus,

[tex]a_{c}[/tex] = [tex]\frac{9^{2} }{2}[/tex]

[tex]a_{c}[/tex] = 40.5 m/s²

And then, we find out the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg.

∑[tex]f_{y}[/tex] = m × [tex]a_{c}[/tex]

[tex]f_{n}[/tex] - w = m × [tex]a_{c}[/tex]

[tex]f_{n}[/tex] = m × [tex]a_{c}[/tex] + w

[tex]f_{n}[/tex] = (18.5 × 40.5) + 18.5 (9.80)

[tex]f_{n}[/tex] = 981 N

Thus, the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg in N is 981 N.

Your question is incomplete, but most probably your full question was

A mother pushes her child on a swing so that his speed is 9.00 m/s at the lowest point of his path. The swing is suspended 2.00 m above the child’s center of mass.

For more information about magnitude of the force refers to the link: https://brainly.com/question/30033702

#SPJ11

the4-kgslenderbarisreleasedfromrestintheposition shown. determine its angular acceleration at that instant if (a) the surface is rough and the bar does not slip, and (b) the surface is smooth.

Answers

To determine the angular acceleration of the 4-kg slender bar released from rest in the position shown, we need to consider two cases:

(a) when the surface is rough and the bar does not slip, and

(b) when the surface is smooth.

(a) Rough surface (no slip):
1. Calculate the torque about the center of mass (CM). In this case, the only force causing the torque is gravity (mg), acting downward at the midpoint of the bar.
2. Calculate the moment of inertia (I) for the bar. Since it's a slender bar, I = (1/12) * mass * length^2.
3. Use Newton's second law for rotation:

Torque = I * angular acceleration (α). Solve for α.

(b) Smooth surface:
1. Calculate the torque about the point of contact (A) with the surface. In this case, the gravitational force (mg) acts downward at the midpoint of the bar and the frictional force (f) acts upward at point A.
2. Calculate the moment of inertia (I) for the bar about point A. Use the parallel axis theorem: I_A = I_CM + mass * distance^2.
3. Use Newton's second law for rotation:

Torque = I_A * angular acceleration (α). Solve for α.

By following these steps, you will be able to determine the angular acceleration of the 4-kg slender bar in both cases, when the surface is rough and when the surface is smooth.

To know more about Newton's Second Law here :

https://brainly.com/question/13447525

#SPJ11

What is the primary source of energy for most terrestrial ecosystems?

Answers

The primary source of energy for most terrestrial ecosystems is the sun.

This is because the sun provides energy in the form of sunlight, which is used by plants and other autotrophs to carry out photosynthesis. During photosynthesis, plants convert sunlight into chemical energy in the form of glucose, which is used as a source of energy for the plant's growth and metabolism.

Other organisms in the ecosystem, such as herbivores and carnivores, rely on plants for their energy needs. Herbivores consume plant material, while carnivores consume other animals. In both cases, the energy that these organisms obtain ultimately comes from the sun, as it is the energy source that powers the plant growth and photosynthesis.

There are some exceptions to this general pattern, such as deep-sea ecosystems that rely on chemosynthesis instead of photosynthesis. However, in most terrestrial ecosystems, the sun is the primary source of energy that supports the growth and survival of the ecosystem's organisms.

In summary, the sun is the primary source of energy for most terrestrial ecosystems, providing the energy needed for plant growth and photosynthesis, which in turn supports the growth and survival of other organisms in the ecosystem.

To know more about the Terrestrial ecosystem, here

https://brainly.com/question/29438033

#SPJ4

Other Questions
a rigid cylinder contains a sample of gas at stp. what is the pressure of this gas after the sample is heated to 410 k? what isresponsible for transmitting information between the brain and rest of the body; controls simple reflexes how is coulomb's law similar to newton's law of gravitation? both are inverse-square laws how are the two laws different? Which of the following best describes a star? A star is a celestial body - composed of rock and metal with a very high density. that is too big to be an asteroid, but too small to be a planet. that rotates on an axis and revolves around the Sun composed of gases that emit light due to nuclear reactions. a nurse palpates the presence of an enlarged epitrochlear lymph node. which area of the client's body should the nurse thoroughly examine to assess for the source of this finding? the pacu nurse manages a patient who is experiencing pain by administering opioids. which patient assessment is the most important with opioid administration? determine the total power delivered to the circuit (i.e., the total power dissipated in the resistors) what type of inter-molecular force arises from instantaneous dipole moments?a. hydrogen bondingb. dipole-dipole bond c. ion-dipole interactions d. ion-induce dipoles e. London Dispersion Forces mHJmeasure of arc HJ:96291 at 95% confidence, how large a sample should be taken to obtain a margin of error of 0.04 for the estimation of a population proportion? assume that past data are not available for developing a planning value for p*. (round your answer up to the nearest whole number.) when a cold cp air mass passes over the warmer great lakes, it absorbs heat energy and moisture and becomes humidified. this is known as the question 24 options: humidity effect. continental effect. maritime effect. lake effect. The units of voltage areOohms, amps, voltsOamps, volts, ohmsOvolts, ohms, ampsOvolts, amps, ohmsof current areand of resistance are 3. cartilage is separated from surrounding tissues by a fibrous a. perichondrium b. lacunae c. canaliculi d. matrix e. periosteum which question can be answered by performing a person analysis?multiple choicehow will the training be carried out?are there any impediments to implementing a training program?what are the tasks that require more training?does the organization have the infrastructure to support training?are employees ready for training? why is it likely that saturn's volcanically active moon, enceladus, is being powered by tidal heating? What does Andy Warhol,Robert Fulton,Andrew Jackson and Elizabeth Candy Stanton have in common? write the number 150 as a sum of three numbers so that the sum of the products taken two at a time is a maximum. (enter the three numbers as a comma-separated list.) WHat is 9. 30 x 6. 6 I cant seem to get it there are four major stages in the development of the storyline of melodramatic films. what are these stages? masswhat is the relationship between energy in joules versus ev. if you have a proton at 10 mev, how fast is it going?