a 1000-kg automobile enters a freeway on-ramp at 20 m/s and accelerates uniformly up to 40 m/s in a time of 10 seconds. how far does the automobile travel during that time?

Answers

Answer 1

The automobile will travel for 300 m during that time. The result is obtained by using the formula for uniformly accelerated motion.

Uniformly Accelerated Motion

The equations apply in uniformly accelerated motion in horizontal dimension are

v₁ = v₀ + at

v₁² = v₀² + 2ax

x = v₀t + ½ at²

Where

v₀ = initial velocityv₁ = final velocitya = accelerationt = timex = distance

We have

m = 1000 kgv₀ = 20 m/sv₁ = 40 m/st = 10 s

Find the distance that the automobile travel during that time!

From that information, we can find the acceleration.

a = (v₁ - v₀)/t

a = (40 - 20)/10

a = 2 m/s²

The distance will be

x = v₀t + ½ at²

x = 20(10) + ½ (2)(10)²

x = 200 + 100

x = 300 m

Hence, that time the automobile will reach the distance of 300 m.

Learn more about uniformly accelerated motion here:

brainly.com/question/30537831

#SPJ11


Related Questions

a particle passes through the point at time , moving with constant velocity . find the position vector of the particle at an arbitrary time .

Answers

The position vector of the particle at an arbitrary time is vt.

Step by step explanation:

The position vector of the particle at an arbitrary time is a vector that has both direction and magnitude.

It is defined by its starting point and its endpoint.

Given that a particle passes through the point at time t, moving with constant velocity v, the position vector of the particle at an arbitrary time is given by the formula;

Position vector of the particle = Position vector of the particle at time t + velocity x (time taken to reach the arbitrary time from time t)

Therefore, the position vector of the particle at an arbitrary time is given as r = [tex]r_0[/tex] + vt where:

[tex]r_0[/tex] is the position vector of the particle at time t. v is the velocity of the particle. t is the time taken to reach the arbitrary time from time t.

For instance, if the particle passes through the origin at time t, moving with constant velocity v, the position vector of the particle at an arbitrary time will be given as;

r = 0 + vt = vt

Hence, the position vector of the particle at an arbitrary time is vt.

Learn more about velocity, time, vector at :'Final velocity of a moving object' https://brainly.com/question/25905661

#SPJ11

a rifle is fired with angle of elevation . what is the muzzle speed if the maximum height of the bullet is ft?

Answers

The muzzle speed of the bullet fired from the rifle is approximately 1349.1 ft/s.

When a rifle is fired with an angle of elevation, the muzzle speed can be determined if the maximum height of the bullet is known.

The formula for finding the muzzle speed of a bullet fired from a rifle is given by;v = sqrt((gH) / sin(2θ))

where;v = Muzzle speed of the bulletg = Acceleration due to gravityH = Maximum height of the bulletθ = Angle of elevation.

Thus, the muzzle speed of the bullet can be found.SolutionIn the given problem, the angle of elevation of the rifle is not given, but we have been given the maximum height of the bullet.

Muzzle speed of,

v = sqrt((gH) / sin(2θ)) , We have been given that the maximum height of the bullet is 375 ft.

Therefore, H = 375 ft.We are supposed to find the muzzle speed of the bullet. Therefore, we will represent the muzzle speed of the bullet by v.

We have been given the value of the acceleration due to gravity, which is;g = 32 ft/s²Now, we have to find the value of θ, which is the angle of elevation of the rifle.

The value of θ, we will use the formula for finding the maximum height of a projectile given by;H = (v²sin²θ) / (2g)We have been given that H = 375 ft, g = 32 ft/s².

Rearrange the formula for H to get;θ = sin⁻¹(2gH / v²)θ = sin⁻¹((2×32×375) / v²)θ = sin⁻¹(24000 / v²)Using a scientific calculator, we will find thatθ ≈ 21.37°

The muzzle speed;v = sqrt((gH) / sin(2θ))v = sqrt((32 × 375) / sin(2 × 21.37)), v ≈ 1349.1 ft/s. Therefore, the muzzle speed of the bullet fired from the rifle is approximately 1349.1 ft/s.

to know more about speed refer here:

https://brainly.com/question/28224010#

#SPJ11

an isotonic contraction is one that involves a change in length but not a change in tension. true or false

Answers

The given statement is false. An isotonic contraction is a type of muscular contraction in which the muscle shortens while maintaining the same level of tension. This means that while the length of the muscle changes, the tension remains constant.


What are isotonic contractions?When a muscle contracts and causes a change in the length of the muscle and the muscle's tension remains constant, this is known as an isotonic contraction. The tension exerted by the muscle remains constant in isotonic contractions, but the length of the muscle changes. Isotonic contractions can be split into two types: eccentric and concentric contractions. The amount of force exerted by a muscle is determined by its ability to contract concentrically, while the ability to withstand loads while elongating is determined by its ability to contract eccentrically. Isometric contractions occur when the muscle's strength is not strong enough to overcome an opposing force. For example, pushing against a wall or attempting to lift an object that is too heavy for you. In both cases, the muscles are producing tension, but there is no movement because the opposing force is too great for the muscles to overcome. Therefore, the given statement is false.

For more details about isotonic contraction, click on the below link:

https://brainly.com/question/25121637

#SPJ11

a typical television remote control emits radiation with a wavelength of 938 nm. what is the frequency (in 1/s) of this radiation?

Answers

The typical television remote control emits radiation with a wavelength of 938 nm having a frequency of [tex]3.20 \times 10^{14} s^{-1}[/tex].

The frequency of this radiation can be determined using the formula λν = c, where λ is the wavelength, ν is the frequency, and c is the speed of light in a vacuum.

The speed of light is approximately 3.00 × 10^8 m/s. The wavelength of the radiation in meters is given by:

938 nm = 938 × 10^-9 m
So, λ = 938 × 10^-9 m.

Substituting this value and the value of c in the formula, we have:
938 × 10^-9 m × ν = 3.00 × 10^8 m/s

Solving for ν gives:
ν = (3.00 × 10^8 m/s) / (938 × 10^-9 m) = 3.20 × 10^14 s^-1

Therefore, the frequency of the radiation emitted by the typical television remote control is 3.20 × 10^14 s^-1 (or Hertz).

Learn more about frequency:

https://brainly.com/question/254161

#SPJ11

a large piece of debris that only partially burns up in the atmosphere, leaving a fragment to hit the surface, is called a

Answers

A large piece of debris that only partially burns up in the atmosphere, leaving a fragment to hit the surface is called: a meteorite

When an asteroid or comet fragment encounters the Earth's atmosphere, it is called a meteor. A meteor is a visual phenomenon that occurs when a meteoroid enters the Earth's atmosphere at high speeds and burns up due to friction with the atmosphere.

As it enters the atmosphere, the meteor heats up and begins to glow, producing a streak of light across the sky. Most meteors burn up completely in the atmosphere, but occasionally, a large piece of debris may only partially burn up, leaving a fragment to hit the surface. This is what is referred to as a meteorite.

Meteorites are valuable to scientists because they provide important information about the origins and evolution of our solar system. They can also give insights into the conditions that existed on early Earth and provide clues to the formation of planets.

To know more about the atmosphere refer here:

https://brainly.com/question/13958926#

#SPJ11

A typical neutron star may have a mass equal to that of the sun but a radius of only 10.0 km.
a. What is the gravitational acceleration at the surface of such a star?
b. How fast would an object be moving if it fell from rest through a distance of 1.20 m on such a star?

Answers

a.The gravitational acceleration at the surface of a neutron star is  1.32 × 10¹⁴ m/s².

b.an object would be moving at a velocity of 7.76 × 10⁶ m/s if it fell from rest through a distance of 1.20 m on such a neutron star.

a. The gravitational acceleration at the surface of a neutron star can be calculated using the formula for acceleration due to gravity:g=GM/r²

where g is the acceleration due to gravity,

G is the gravitational constant,

M is the mass of the neutron star, and r is the radius of the neutron star.

Substituting the given values,M = Mass of neutron star = Mass of Sun = 1.99 × 10³⁰ kg

r = Radius of neutron star = 10 km = 10,000 m

G = Gravitational constant = 6.67 × 10⁻¹¹ N m²/kg²

g= GM/r²= (6.67 × 10⁻¹¹ N m²/kg²) (1.99 × 10³⁰ kg) / (10,000 m)²= 1.32 × 10¹⁴ m/s²

Therefore, the gravitational acceleration at the surface of a neutron star is 1.32 × 10¹⁴ m/s².

b. The formula for velocity, v of a falling object under gravity can be given as v = √2gh

where g is the gravitational acceleration, h is the height fallen through, and v is the velocity of the object.

Substituting the given values,h = 1.20 mg = 1.32 × 10¹⁴ m/s²

v = √2gh= √(2 × 1.32 × 10¹⁴ m/s² × 1.20 m)= 7.76 × 10⁶ m/s

Therefore, an object would be moving at a velocity of 7.76 × 10⁶ m/s if it fell from rest through a distance of 1.20 m on such a neutron star.

To learn more about neutron star https://brainly.com/question/30114728

#SPJ11

What arguments did he use to prove that he was right?did be used experiments, logic, finding of other scientists or other approaches

Answers

In science, arguments to prove a hypothesis or theory can be supported by various approaches such as experiments, logic, findings of other scientists, and other approaches.

Experiments are a common method used to support arguments in science. They involve carefully designed procedures to test a hypothesis or theory and collect data that can be analyzed to support or refute the hypothesis or theory. The data collected can be used to provide evidence for the argument being made.

Logic is also used in science to support arguments. Logical reasoning involves using a set of premises or assumptions to arrive at a conclusion. Scientists often use logic to develop hypotheses and theories that can be tested through experiments or other means.

Findings of other scientists can also be used to support arguments. When multiple studies or experiments have been conducted on a particular topic, scientists may review and analyze the findings to arrive at a conclusion. The consensus among the scientific community can lend weight to an argument.

Other approaches to support arguments in science may include mathematical models, simulations, and observations. In general, scientists use a variety of approaches to support their arguments and conclusions in order to ensure that their findings are as accurate and reliable as possible.

To know more about hypothesis, visit: brainly.com/question/29519577

#SPJ4

a child rocks back and forth on a porch swing with an amplitude of 0.204 m and a period of 2.80 s.assuming the motion is approximately simple harmonic, find the child's maximum speed.

Answers

The child's maximum speed is 0.459 m/s

Step by step explanation:

Amplitude = 0.204 m

Period = 2.80 s

We know that the speed is maximum when the displacement is zero.

Therefore, the maximum speed is given by v max = 2πAf (where A is the amplitude and f is the frequency).

We know that

f= 1/T

⇒ f=1/2.8

⇒ f=0.357 Hz

Now, we can find the maximum speed of the child

vmax=2πAf

⇒vmax=2π × 0.204 × 0.357

⇒vmax=0.459 m/s

Therefore, the child's maximum speed is 0.459 m/s.

Learn more about the object under simple harmonic motion : 'The maximum speed of the object' https://brainly.com/question/26114128

#SPJ11

pleases can someone help me with this question

Answers

Physiological fitness, body circumference fitness and bone strength fitness comes under nonperformance-related fitness while health-related fitness and skill related fitness comes under performance-related fitness.

Physiological Fitness refers to the ability of the body to meet the demands of physical activity and exercise also includes factors such as aerobic and muscular strength, endurance, and flexibility. Skill Related Fitness refers to physical abilities that are related to performance of sports, such as agility, coordination, balance, power, speed, and reaction time. Health-Related Fitness refers to the components of physical fitness related to health, such as cardiorespiratory fitness, body composition, and muscular strength and endurance. Bone Strength Fitness refers to the strength of the bones and how well they can withstand force and protect from injury. Body Circumference Fitness refers to the circumference of the body and how well it is proportioned to support physical activities.

To learn more about fitness click here https://brainly.com/question/8860814

#SPJ1

a spring has a mass of 2kg attached to it, and the spring constant is 8n /m. the mass is set in motion from the rest position with an initial velocity of 2m/s. assuming that there is no damping, find the subsequent motion of the mass. (you do not need to use the phase shift)

Answers

The subsequent motion of the mass attached to the spring with a spring constant of 8n/m and a mass of 2kg, is an oscillatory motion with a frequency of 1 radian/s. This means that the mass will move with a sinusoidal motion between its equilibrium point and the maximum displacement of 4m. The amplitude of the motion will remain constant, and the mass will reach its equilibrium position twice in each cycle.

The motion is determined by the spring constant (k) and the mass (m). As the spring constant is high, the mass will move with a higher frequency and shorter period, and the amplitude of the oscillatory motion will be higher.

As the mass was initially set in motion with an initial velocity of 2m/s, the mass will continue to move with the same speed and the same direction until it reaches its equilibrium point. The velocity of the mass will be highest at the equilibrium point, and will decrease as it moves away from it.

The motion of the mass will be periodic and repeat itself over time, and it will not be affected by any external forces such as friction or damping. As long as the mass remains at rest at the equilibrium point, the motion of the mass will continue in the same way.

Know more about oscillatory motion here

https://brainly.com/question/29484165#

#SPJ11

I need help please please please please

Answers

The number of parking spaces that the parking lot has, given the length of the parking lot, is 32 parking spaces.

How to find the number of parking spaces ?

To find out how many parking spaces the parking lot has, first we need to determine the total length of the row where parking spaces will be created.

Length of the row for parking spaces = Total length of the parking lot - Length not painted for cars to turn

= 316 feet - 28 feet = 288 feet

Now that we know the length of the row for parking spaces, we can calculate how many 9-foot-wide spaces will fit in this row.

Number of parking spaces = Length of the row for parking spaces / Width of each parking space

= 288 feet / 9 feet = 32 parking spaces

Find out more on parking lots at https://brainly.com/question/3387253

#SPJ1

a compound machine used to raise heavy boxes consists of a ramp and a pulley. the efficiency of pulling a 100 kg box up the ramp is 50%. if the efficiency of the pulley is 90%, what is the overall efficiency of the compound machine?

Answers

The overall efficiency of the compound machine is 116.7%

Efficiency = (output work/input work) x 100%

Total output work = 500 J + 900 J = 1400 J

Total input work = 1000 J + 200 J = 1200 J

Efficiency = (output work/input work) x 100%

Efficiency = (1400 J / 1200 J) x 100%

Efficiency = 116.7%

Efficiency is a measure of how well a system or process converts energy or resources into useful output. It is usually expressed as a percentage of the input energy or resources that are effectively utilized to produce the desired output.

In thermodynamics, efficiency is often used to describe the ratio of useful work output to the total energy input in a process, such as in a heat engine. In electrical engineering, efficiency can refer to the amount of electrical power that is delivered to a load compared to the total power consumed by a system. Efficiency is an important concept in many areas of physics and engineering, as it allows us to evaluate the performance of systems and devices, and to identify areas where improvements can be made.

To learn more about Efficiency visit here:

brainly.com/question/30280642

#SPJ4

how might we experience the universe differently if the speed of light were much slower? much faster? what if the speed of light were not constant? construct the correct description.

Answers

The speed of light plays a significant role in the functioning of the universe. It is responsible for the formation of stars, galaxies, and planets. Without the speed of light, the universe would be entirely different from what we know it to be.

If the speed of light were slower, it would have a considerable impact on the way we view the universe. The universe would seem much larger than it currently appears. The sun would appear much smaller than it does now because it would appear to be much further away from the Earth. The universe's shape, as well as its size, would be affected if the speed of light were slower.

The universe might even appear to be smaller and less complex than it currently does.  If the speed of light were much faster than it is now, we would be able to see much more of the universe than we currently can. The universe would be more significant than it is now, and we would be able to see more distant stars and galaxies. The universe would appear more substantial and more complex than it currently appears.

If the speed of light were not constant, it would have a considerable impact on the universe. The universe's shape, as well as its size, would be affected. The universe might even appear to be smaller and less complex than it currently does.

Learn more about the speed of light at:

brainly.com/question/29216893

#SPJ11

when 115 v is applied across a wire that is 10 m long and has a 0.30 mm radius, the magnitude of the current density is 1.4 108 a/m2 . find the resistivity of the wire.

Answers

The resistivity of the wire when a voltage of 115 V is applied across a wire that is 10 m long and has a 0.30 mm radius is: [tex]2.33 x 10-15 ohm-m[/tex]

The resistivity of the wire can be determined from the magnitude of the current density. Using Ohm's law, the current density can be calculated as follows:
I = V/R
Where, I = current density (A/m2)
V = Voltage (V)
R = Resistance (ohms)

Therefore, the resistance of the wire can be determined as:
R = V/I
[tex]R = 115 V/1.4 x 108 A/m2[/tex]
[tex]R = 8.21 x 10-9 ohms[/tex]

The resistivity of the wire is equal to the resistance of the wire multiplied by the cross-sectional area of the wire, A. Since the wire has a radius of 0.30 mm, the cross-sectional area is equal to the area of a circle:

A = pi x r2
[tex]A = 3.14 x (0.30 x 10-3)2[/tex]
[tex]A = 2.83 x 10-7 m2[/tex]

Therefore, the resistivity of the wire can be determined as:

ρ = R x A
[tex]ρ = 8.21 x 10-9 x 2.83 x 10-7[/tex]
[tex]ρ = 2.33 x 10-15 ohm-m[/tex]

This is the resistivity of the wire when a voltage of 115 V is applied across a wire that is 10 m long and has a 0.30 mm radius.

To know more about magnitude refer here:

https://brainly.com/question/15681399#

#SPJ11

calculate the moment of inertia of a baseball bat about its proximal end if its mass is 2.1kg and has a radius of gyration of 58% and a length of 0.869m

Answers

That's correct! Contact forces are forces that require physical contact between two objects to be exerted, such as friction, tension, and normal force.

What is Moment of Inertia?

Moment of inertia is a physical quantity that describes the rotational inertia of an object. It is a measure of an object's resistance to rotational motion around a particular axis, and depends on both the mass distribution and the distance of the mass from the axis of rotation.

Non-contact forces, on the other hand, can act over a distance without the need for physical contact, such as gravitational forces, electromagnetic forces, and nuclear forces.

The direction of a force is described using a coordinate system, usually using the x, y, and z axes. The magnitude of a force, measured in Newtons (N), describes the strength of the force. When multiple forces act on an object, they can be combined to find the net force, which determines the resulting motion of the object.

Learn more about Moment of Inertia from given link

https://brainly.com/question/14119750

#SPJ1

calculate the original charge on the capacitor plates. express your answer with the appropriate units.

Answers

The original charge on a capacitor plate can be calculated using the formula Q = CV, where C is the capacitance and V is the voltage across the capacitor.

The steps to be followed to calculate the capacitor plates as

To use this formula, you will need to know the values of C and V. Capacitance is measured in farads (F) and voltage is measured in volts (V).If you are given the capacitance and voltage values, simply substitute them into the formula and solve for Q.Therefore, the original charge on the capacitor plates is equal to (capacitance * voltage)/number of plates, expressed in Coulombs.

To learn more about the capacitor plates :

https://brainly.com/question/13578522

#SPJ11

how far will a rock travel if it is thrown upward at an angle of 35.00 with respect to the horizontal and with a speed of 21.3 m/s? what is the maximum range that can be achieved with the same initial speed?

Answers

The maximum range that can be achieved with the same initial speed is 69.6 m.

The distance that a rock will travel when thrown upward at an angle of 35.00 with respect to the horizontal and with a speed of 21.3 m/s is determined by the equations of projectile motion.

The maximum range that can be achieved is calculated by using the equation for the range of a projectile, which is R = (V2sin2θ)/g,

where V is the initial speed (21.3 m/s in this case), θ is the angle with respect to the horizontal (35.00 in this case), and g is the acceleration due to gravity (9.8 m/s2). The range can be calculated to be 69.6 m.

The motion of the rock can be broken down into two components:

the vertical component, which is determined by the equation h = (Vsinθ)t - ½gt2, and the horizontal component, which is determined by the equation x = Vcost.

The maximum height that the rock reaches is calculated by substituting t = (Vsinθ)/g into the equation for the vertical component, resulting in hmax = (V2sinθ)/2g.

As the rock falls back to the ground, the time taken for it to reach the ground is calculated by substituting hmax into the equation for the vertical component, resulting in ttotal = 2(Vsinθ)/g.

The range of the projectile is then calculated by substituting ttotal into the equation for the horizontal component, resulting in the equation for the range of a projectile given above.

The distance that a rock will travel when thrown upward at an angle of 35.00 with respect to the horizontal and with a speed of 21.3 m/s is determined by the equations of projectile motion,

and the maximum range that can be achieved with the same initial speed is 69.6 m.

to know more about speed refer here:

https://brainly.com/question/28224010#

#SPJ11

on a day when there is no wind, you are moving toward a stationary source of sound waves. compared to what you would hear if you were not moving, the sound that you hear has

Answers

The sound that you hear has a higher frequency and a shorter wavelength.

When you move towards a stationary source of sound waves, the wavelength is shortened and the frequency is increased. This is due to the Doppler Effect, which states that a wave's frequency increases as the source and observer come closer together.

The Doppler effect is a phenomenon when there is a change in the frequency of the wave due to a displacement of the source and detector/listener.

In summary, when you move towards a stationary source of sound waves, the sound you hear has a higher frequency and a shorter wavelength.

Learn more about Doppler Effect at https://brainly.com/question/1330077

#SPJ11

TRUE or FALSE – Energy can be transferred from Kinetic Energy (KE) to Potential Energy (PE) and vice versa.

Answers

True, energy can be transferred from kinetic energy (KE) to potential energy (PE) and vice versa

Can energy be transferred from Kinetic Energy (KE) to Potential Energy (PE) and vice versa?

The principle of the conservation of energy states that energy cannot be created or destroyed but can only transferred or transformed from one form to another.

When an object is in motion, it has kinetic energy, and when it is at rest, it has potential energy.

When the object moves from a stationary position to a position in motion, some of its potential energy is converted into kinetic energy.

Conversely, when the object moves from a position in motion to a stationary position, some of its kinetic energy is converted into potential energy.

Hence, the statement is TRUE.

Learn about energy conservatiuon here: https://brainly.com/question/2137260

#SPJ1

a flyewheel has a diameter of 1.72 m and a mass of 902 kg. what torque in newtons is needed to produce and angular acceleration of 100 rpm/s

Answers

A torque of 3471.9 N·m is needed to produce an angular acceleration of 100 rpm/s in a flywheel with a diameter of 1.72 m and a mass of 902 kg.

How to find the torque

First, let's convert the angular acceleration from revolutions per minute per second (rpm/s) to radians per second per second (rad/s²):

100 rpm/s = 100 × 2π/60 rad/s² ≈ 10.47 rad/s²

The moment of inertia of a flywheel can be calculated using the formula:

I = (1/2)mr²

where

m is the mass of the flywheel and

r is the radius (half of the diameter).

Thus, we have:

r = 1.72/2 = 0.86 m

m = 902 kg

I = (1/2) × 902 kg × (0.86 m)² ≈ 331.9 kg·m²

The torque (T) required to produce the desired angular acceleration (α) can be found using the formula:

T = I × α

T = 331.9 kg·m² × 10.47 rad/s² ≈ 3471.9 N·m

Learn more about torque at:

https://brainly.com/question/1233416

#SPJ1

determine the intensity of electromagnetic waves from the sun just outside the atmospheres of the earth.

Answers

The intensity of the electromagnetic radiation from the Sun just outside the atmosphere of the Earth is 1.55 x 10-9 W/m2.

The intensity of electromagnetic waves from the sun just outside the atmosphere of the Earth can be calculated using the inverse-square law.

This law states that the intensity of the radiation decreases with the square of the distance from the source. Thus, the intensity of the radiation at the edge of the atmosphere will be lower than that at the surface of the Sun.

The intensity of the radiation, we need to know the distance from the Sun to the Earth. This distance is approximately 93 million miles (150 million kilometers).

The intensity of the radiation at the edge of the atmosphere by taking the inverse-square of this distance, which is approximately 1.55 x 10-9 W/m2.

This is the intensity of the electromagnetic radiation from the Sun just outside the atmosphere of the Earth.

The intensity of the electromagnetic radiation from the Sun just outside the atmosphere of the Earth is 1.55 x 10-9 W/m2.

This is due to the inverse-square law, which states that the intensity of radiation decreases with the square of the distance from the source.

to know more about electromagnetic refer here:

https://brainly.com/question/17057080#

#SPJ11

The absolute brightness of a star depends on its _____.
a. size and temperature
b. distance an temperature
c. color and temperature
d. distance and color

Answers

Option A. The absolute brightness of a star depends on its size and temperature

What is the  absolute brightness of a star

The absolute brightness of a star is the amount of light it emits at a standard distance from Earth, regardless of how far away it actually is.

The size and temperature of a star are the primary factors that determine its absolute brightness. The size of the star affects the amount of light it emits, with larger stars emitting more light. The temperature of a star affects the color of the light it emits, with hotter stars emitting bluer light and cooler stars emitting redder light. Both of these factors play a significant role in determining a star's absolute brightness.

Distance and color can also affect a star's brightness, but in different ways. The distance of a star affects its apparent brightness as seen from Earth, but not its absolute brightness. The color of a star can provide information about its temperature and composition, but does not directly determine its absolute brightness.

Read more on brightness of a star here:https://brainly.com/question/14376690

#SPJ1

as the normal contact force increases, what happens to the friction force? it increases. it decreases. it remains constant. it disappears. this depends on the weight of the object.

Answers

As the normal contact force increases, the friction force also increases.

The friction force is proportional to the normal force, according to the formula:  [tex]F_{friction} = \mu F_{normal}[/tex]

where  [tex]F_{friction}[/tex] is the friction force,

μ is the coefficient of friction, and

[tex]F_{normal}[/tex] is the normal force.

Therefore, if the normal force increases, the friction force will also increase proportionally. The coefficient of friction remains constant for a given pair of materials in contact, so it does not change with the normal force.

The weight of the object does affect the normal force, but it does not affect the relationship between the normal force and the friction force.

The friction force is also shown :

https://brainly.com/question/25362319

#SPJ11

an optical telescope at the yerkes observatory (williams bay, wisconsin) has a lens that is approxi- mately 1 meter in diameter. which type of telescope is this

Answers

The optical telescope at the Yerkes Observatory in Williams Bay, Wisconsin with a lens diameter of approximately 1 meter is a refracting telescope.

A refracting telescope, also known as a refractor, is an optical telescope that uses a lens to bend and focus light to form an image. The telescope that was mentioned in the question is a refracting telescope. It is the first type of telescope ever invented, and it was invented by Dutch scientist Hans Lippershey in 1608. This type of telescope works by collecting and bending light from objects that are far away through a convex lens to produce a magnified image.

The parts of a refracting telescope are as follows:

Lens: The lens of the telescope collects and refracts light, forming a magnified image.

Focuser: The focuser of the telescope is the part that moves the eyepiece to bring the image into focus.

Eyepiece: The eyepiece of the telescope magnifies the image formed by the lens.

Tube: The tube of the telescope is the housing that holds the lens, focuser, and eyepiece in place.

Mount: The mount of the telescope is the part that holds the tube and allows for movement and tracking of the telescope.

A refracting telescope uses a lens to bend light, while a reflecting telescope uses a mirror to reflect light. The lenses in a refracting telescope can be prone to chromatic aberration, which causes different colors of light to be refracted at different angles, resulting in a blurry image. Reflecting telescopes can be made larger than refracting telescopes without being excessively heavy or long. As a result, most modern telescopes are reflecting telescopes.

for such more question on refracting telescope

https://brainly.com/question/30585050

#SPJ11

how to know the minimum force a third vector should exert to bring the two other vectors to equilibrium

Answers

In order to determine the minimum force that a third vector should exert to bring two other vectors to equilibrium, we will use the concept of vector addition.

Here is some steps:

Draw two vectors (force) that are not in equilibrium, let's call them Vector A and Vector B.Draw a third vector (force) acting in the opposite direction to Vector A or Vector B.Measure the magnitude of Vector A and Vector B.To bring the two vectors to equilibrium, the third vector should have the same magnitude as Vector A + Vector B.

This is because the third vector must be strong enough to cancel out the net force acting on the system. If the third vector has a magnitude less than Vector A + Vector B, then the system will not be in equilibrium.

For example, suppose Vector A has a magnitude of 5 N and Vector B has a magnitude of 3 N.

Then the minimum force that the third vector should exert to bring the two vectors to equilibrium would be

5 N + 3 N⇒8 N

To know more about the "force": https://brainly.in/question/23858054

#SPJ11

the paper dielectric in a paper-and-foil capacitor is 8.10*10^-2 mm thick. it's dielectric constant is 2.10, and it's dielectric strength is 50.0 MV/m. assume that the geometry is that of a parallel-plate capacitor, with the metal foil serving as the plates.
Part A: What area of each plate is required for for a 0.300 uF capacitor? In m^2
Part B: If the electric field in the paper is not to exceed one-half the dielectric strength, what is the maximum potential difference that can be applied across the compactor? In V

Answers

a. Part A: The area of each plate is required for for a 0.300 uF capacitor is 1.56 × [tex]10^{-4}[/tex] m².

b. Part B: If the electric field in the paper is not to exceed one-half the dielectric strength, the maximum potential difference that can be applied across the compactor is 2025 V.

To find the area of each plate required for a 0.300 uF capacitor, use the formula:

C = ε₀εrA/d

where C is the capacitance, ε₀ is the vacuum permittivity (8.85 × [tex]10^{-12}[/tex] F/m), εr is the relative permittivity (dielectric constant), A is the area, and d is the distance between the plates. In this case,

C = 0.300 uF

εr = 2.10

d = 8.10 × [tex]10^{-5}[/tex] m.

Rearrange the formula to find A:

A = Cd / (ε₀εr)

A = (0.300 × [tex]10^{-6}[/tex] F)(8.10 × [tex]10^{-5}[/tex] m) / (8.85 × [tex]10^{-12}[/tex] F/m × 2.10)

A ≈ 1.56 × [tex]10^{-4}[/tex] m²

Thus, the area of each plate required for a 0.300 uF capacitor is approximately 1.56 × [tex]10^{-4}[/tex] m².

To find the maximum potential difference that can be applied across the capacitor, use the formula:

V = Ed

where E is the electric field and d is the distance between the plates. In this case, E is half the dielectric strength (50.0 MV/m / 2 = 25.0 MV/m), and d = 8.10 × [tex]10^{-5}[/tex] m:

V = (25.0 × 10^6 V/m)(8.10 × 10^-5 m)

V ≈ 2025 V

Thus, the maximum potential difference that can be applied across the capacitor without exceeding one-half the dielectric strength is approximately 2025 V.

To learn more about potential difference, click here:https://brainly.com/question/12198573

#SPJ11

a flywheel has a radius of 0.40 m. what is the speed of a point on the edge of the flywheel if it experiences a centripetal acceleration of 15 m/s2

Answers

The speed of a point on the edge of a flywheel with a radius of 0.40 m that experiences a centripetal acceleration of 15 m/s² is 2.45 m/s.

A flywheel is a type of mechanical device that stores energy and is used to smoothen the output of a rotational system. It is a rotating mechanical device that acts as a reservoir for energy storage and a system energy stabilizer. It also aids in the maintenance of a constant rotational speed in a machine.

The following are the formulas used to determine the speed of a point on the edge of a flywheel and its centripetal acceleration:

v = rω

where v = linear velocity; r = radius; ω = angular velocity;

a = rω²

where a = centripetal acceleration; r = radius; ω = angular velocity

Therefore, if a flywheel has a radius of 0.40 m and it experiences a centripetal acceleration of 15 m/s², the speed of a point on the edge of the flywheel is:

v = rωv = 0.40ωω = √(a/r)ω = √(15/0.40)ω = 6.12 rad/sv = rωv = 0.40 x 6.12v = 2.45 m/s

Therefore, the speed of a point on the edge of a flywheel that experiences a centripetal acceleration of 15 m/s² is 2.45 m/s.

To know more about centripetal acceleration click here:

https://brainly.com/question/14465119

#SPJ11

Find the change in temperature of each sample after the hot water was added. Fill in the table with the data you collected in parts C and D. To find the change in a sample’s temperature, subtract the starting temperature from the ending temperature.

Sample Starting Temperature Ending Temperature Change in Temperature
50 g sand


50 g water


100 g water

Answers

The change in temperature of  50 g sand :50 g water and 100 g water is

10°C ;15°C and 15.1°C

             

The change in temperature of each sample after the hot water was added can be found by subtracting the starting temperature from the ending temperature. For the 50 g sand sample, the starting temperature was 23.4°C and the ending temperature was 33.4°C, so the change in temperature was 10°C. For the 50 g water sample, the starting temperature was 22.7°C and the ending temperature was 37.7°C, so the change in temperature was 15°C. For the 100 g water sample, the starting temperature was 21.5°C and the ending temperature was 36.6°C, so the change in temperature was 15.1°C.

Sample               Starting Temp          Ending Temp        Change in Temp

50 g sand                  23.4°C                      33.4°C                  10°C

50 g water                 22.7°C                      37.7°C                   15°C

100 g water                21.5°C                       36.6°C                  15.1°C

learn more about temperature Refer:brainly.com/question/4160783

#SPJ1

How much heat will be released when 6.44 g of sulfur reacts with excess O2 according to the following equation? 2 S + 3O2 → 2SO3 ∆H = -791.4 kJ

Answers

When 6.44 g of sulfur reacts with excess O2 according to the given equation 2 S + 3O2 → 2SO3 ∆H = -791.4 kJ, 252.7 kJ of heat will be released.

To find the amount of heat released in the given reaction, we need to find the number of moles of sulfur and then use the balanced chemical equation to find the amount of heat released.

Moles of sulfur = Mass of sulfur/Molar mass of sulfur

= 6.44 g/32.06 g/mol = 0.201 mol

From the balanced chemical equation, it is clear that 2 moles of sulfur reacts with 3 moles of O2 to produce 2 moles of SO3. In this case, we have enough O2. So, sulfur is the limiting reactant. Number of moles of sulfur = 0.201 mol, Number of moles of SO3 produced = 2 × 0.201 mol/2 = 0.201 mol.

According to the balanced chemical equation, 2 moles of SO3 is produced with the release of 791.4 kJ of heat.So, for 0.201 mol of SO3 produced, the amount of heat released = 791.4 kJ/2 mol × 0.201 mol = 79.14 kJ

Thus, the amount of heat released when 6.44 g of sulfur reacts with excess O2 is 79.14 kJ (approx).

To know more about heat click on below link:

https://brainly.com/question/27399315#

#SPJ11

The amount of heat released when 6.44 g of sulfur reacts with excess O₂ is 79.14 kJ (approx.).

When 6.44 g of sulfur reacts with excess O₂ according to the given equation 2 S + 3O₂ → 2SO₃ ∆H = -791.4 kJ, 252.7 kJ of heat will be released.

To find the amount of heat released in the given reaction, we need to find the number of moles of sulfur and then use the balanced chemical equation to find the amount of heat released.

Moles of sulfur = Mass of sulfur/Molar mass of sulfur

= 6.44 g/32.06 g/mol = 0.201 mol

From the balanced chemical equation, it is clear that 2 moles of sulfur reacts with 3 moles of O₂ to produce 2 moles of SO₃. In this case, we have enough O₂. So, sulfur is the limiting reactant. Number of moles of sulfur = 0.201 mol, Number of moles of SO₃ produced = 2 × 0.201 mol/2 = 0.201 mol.

According to the balanced chemical equation, 2 moles of SO₃ is produced with the release of 791.4 kJ of heat.So, for 0.201 mol of SO₃ produced, the amount of heat released = 791.4 kJ/2 mol × 0.201 mol = 79.14 kJ

Thus, the amount of heat released when 6.44 g of sulfur reacts with excess O₂ is 79.14 kJ (approx).

To know more about heat click on below link:

brainly.com/question/27399315

#SPJ4

. Lin cooked a pot of soup, then put half the soup in the freezer for a while. Now the soup in the pot is hot, and the soup in the freezer is cold. What is the difference between the molecules of the soup in the pot and the molecules of the soup in the freezer

Answers

Answer:

The molecules of the soup in the pot move faster than those in the freezer.

Explanation:

The soup in the freezer is closer to being a solid than that in the pot. Therefore, it has more energy which will make the molecules move faster.

Other Questions
mark performs database queries at work. in the past year, mark was able to retrieve the information requested by others on almost all occasions except on the few occasions when his supervisor was observing his work. as a result, mark received a low rating in his performance appraisal because his supervisor had only seen the instances when mark had failed and had not noticed the successful database queries handled by him. this is an example of: if you are using the dbms query and the dbms executes the sql query using the chosen execution plan, which phase would need to be implemented? one part of the coterminous u.s. which appears least likely to be impacted by enso is the states. a. northeastern b. southwestern c. northwestern the pharmacy sends the nurse the following coreg tablets. the order is to administer 9.375 mg po daily. how many tablets will the nurse administer? enter only the numeral (not the unit of measurement) in your answer. Please I need help The area of the shaded region is which belief was generally held by the founding fathers at the constitution convention in 1787? What are the financial costs of climate change, and how can we lessen them? GM is tangent to circle O at point G, and GSis a secant line. If mGS = 84, findm/SGM. A block of mass m1=3.0kg rests on a frictionless horizontal surface. A second block of m2=2.0kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block . the blocks are released from rest . determine the displacement of the velocityA block of mass m1=3.0kg rests on a frictionless horizontal surface. A second block of m2=2.0kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block . the blocks are released from rest . Determine how far has block 1 moved during the 1.2-s interval? A) 13.4 m B) 2.1 m C) 28.2m D) 7.6m how does integrated marketing communications (imc) plan approach differ from traditional approaches to promotion? Express the given fraction as percent 3/4? I need help with a question, can someone solve it for me?Why does the earth experience high tides? A. High tides occur because the comet Neowise passed by Earth B.The earth experiences high tides because the gravitational force of the moon attracts the water and solid earth, pulling them closer to the moonC.High tides occur because Jupiter is in alignment with Saturn D.This causes areas of water that bulge away from the earth. at the same temperature, water vapor molecules have the same average kinetic energy as the heavier nitrogen and oxygen molecules in the air. why does sound travel faster in moist air? in other words, how do the average speeds of h2o molecules compare with those of n2 and o2 molecules? why did the democratic party nominate harry s. truman as roosevelt's vice presidential running mate in 1944? How might the ideas of heredity in eugenics play into racism and segregation In the US? Simplify:X- 10 > 3please help me on this You wish to compute the 90% confidence interval for the population proportion. How large a sample should you draw to ensure that the sample proportion does not deviate from the population proportion by more than 0. 08? No prior estimate for the population proportion is available keith is a factory supervisor and is worried about losing his job after the company announced it will be downsizing next year. which social class is keith probably a member of? what is the solow residual and how does it behave over the business cycle? what factors cause the solow resid ual to change? how is the interior of the pantheon illuminated? a.) with rosettes b.) with an open colonnade c.) with a clerestory d.) with an oculus