Answer:
Mutualism is a symbiotic relationship in which both species benefit. Commensalism is a symbiotic relationship in which one species benefits while the other species is not affected. Parasitism is a symbiotic relationship in which one species (the parasite) benefits while the other species (the host) is harmed.how will you select and grow a resistant strain of e. coli in this experiment?
Streptomycin treatment is used in medicine. It s growth is to expose a sample of E.coli to streptomycin by innoculating it into a streptomycin positive plate. any colonies that grow will carry a mutation for resistance.
Streptomycin treatment is known to boast or increase the growth of E. coli by nitrate respiration.Streptomycin is simply regarded as an antibiotic which is often used to treat moderate to severe tuberculosis, pneumonia, E. coli, etc.
See full question below
How will you select and grow a resistant strain of E.coli in this experiment?multiple choice:
(1). expose a sample of E.coli to streptomycin by innoculating it into a streptomycin positive plate. any colonies that grow will carry a mutation for resistance,
(2.) expose a sample of E.coli to sterptomycin by innoculating it into a streptomycin negative plate, any colonies that grow will carry a mutation for resistance,
(3.) samples of bacteria are taken from the culture and observed under a microscope for signs of susceptibility or resistance. those that are resistant are separated and plated.
(4.) a culture of E.coli will be mixed with streptomycin so that the antibiotic can alter the genetic composition of the bacteria
Learn more about resistant strain of e. coli from
https://brainly.com/question/6390757
they overcame by the blood of the lamb and the word of their testimony
Answer:
Revelation 12:11
Give TWO reasons why mechanical digestion of food is important! Marking brainliest
Answer:
Mechanical digestion is a purely physical process that does not change the chemical nature of the food. Instead, it makes the food smaller to increase both surface area and mobility. It includes mastication, or chewing, as well as tongue movements that help break food into smaller bits and mix food with saliva.Explanation:
Hlww Xdxdxdxdxdxdxdxdxd
WILL YOU BE MY FRIEND ......
according to the hydrologic cycle, once precipitation has fallen on land, what paths might the water directly take?
Answer:
it either soaks into the ground, infiltration, flows over the surface as runoff, or immediately evaporates.
The Mississippi river carries sediments into the Gulf of Mexico. What do you think will happen to the sediments after a few million years?.
Answer:
Explanation:
The Mississippi River carries tons of tiny rock fragments called sediments into the Gulf of Mexico. What do you think will happen to these sediments after a few million years? Gizmo Warm-up Over millions of years, rocks are broken down and transformed into other rocks. The Mississippi river carries sediments into the Gulf of Mexico. What do you think will happen to the sediments after. The Mississippi river carries sediments into the Gulf of Mexico. What do you think will happen to the sediments after a few million years?
List reasons you would or would not be concerned about eating genetically modified food
Answer:
Reasons I would be concerned about eating GMO foods:
Explanation:
The FDA declaring them to be "substantially equivalent" to non-GMO foods amid controversy that adequate scientific testing had not been done.
Michael Taylor being in the FDA when "substantial equivalence" was declared. Michael Taylor was a Monsanto employee before taking the position at the FDA.
The technology itself of taking a gene from one species and inserting it into another species (horizontal breeding). While that may be perfectly harmless it is new technology that many believe has not been proven to be safe.
Greater amounts of pesticides being used on GMO crops, which means more pesticides may be getting in our foods.
Crops that are engineered to produce an insecticide in the plant itself possibly having harmful health effects on us. There is some evidence that this may be happening.
cultivation of plant populations of a single species
Which biome are the best suited for agriculture? Explain why each of the biomes you did not specify is less suitable for agriculture.
a difference between bacterial and eukaryotic transcription
Answer:
According to Wikipedia, In bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm.
GIVE BRAINLIEST PLZ! :)
The difference between bacterial and eukaryotic transcription is that in bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm.
What is the difference between eukaryotes and prokaryotes?The main difference between eukaryotes and prokaryotes is that the eukaryotes are well developed and advanced and have different cell organelles and they have different functions in the cell and the prokaryotes are not well developed and they are found in the unicellular organisms.
The unicellular organisms are made of one cell and carry out the processes of life as a single cell and the multicellular organisms are made up of two or more cells that have specific functions to contribute to the life processes.
Therefore, The difference between bacterial and eukaryotic transcription is that in bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm.
Learn more about eukaryotes and prokaryotes on:
https://brainly.com/question/4644590
#SPJ6
What is needed by all living things to carry out all of life's processes?
Answer:
Living organisms need energy to carry out all of life's processes.
Identify the muscle(s) that is/are primarily responsible for holding the head of the humerus in the glenoid cavity.
Help quick!!!!!! In dire need 1st and the correct answer gets brainliest.
Answer:
they can all be applied to other plants.
Help me Pleaseeeee its only for grade 5
What is the surgery that involves trimming excess prostate tissue in order to treat urinary problems that are caused by an enlarged prostate?
Answer:
d. TURP is correct
Explanation: Transurethral resection of the prostate
A population of beetles is mostly composed of individuals with the dominant green color, but there are several with the recessive brown
color. A displaced species of bird moves into the habitat and preferentially preys upon the green beetles. Over time, what can be expected
to happen to the beetle population?
O A. The beetles will migrate to avoid being eaten by the birds in the habitat.
OB. The beetle population will become extinct.
O C. The beetle population will stabilize because the birds will not eat more beetles than necessary to maintain ecological balance.
O D. The brown beetles will become more common.
The green beetles will decrease in number while the brown beetles will become more common.
According to Darwin's theory of evolution, organisms that are better adapted to their environment are able to live longer and survive long enough to reproduce thereby perpetuating their favorable characteristics in the population.
Since the green beetles are more common but they are preferentially preyed upon by the invasive bird species, the green beetles will decrease in number while the brown beetles will become more common.
Learn more: https://brainly.com/question/17638582
All of the following among A-D apply to toll-like receptors EXCEPT A. they bind to PAMPS B. they induce the release of cytokines when activated C. they directly lyse bound pathogens D. when stimulated, they activate the immune system of the body E. there are no exceptions, A-D are all true
The toll-like receptors do NOT directly lyse bound pathogens (Option C). These protein receptors play fundamental roles in the innate immune system.
Toll-like receptors (TLRs) are single-pass membrane-spanning protein receptors that play fundamental functions in the innate immune system.
TLRs are differentially expressed on the surface of antigen-presenting cells (i.e., macrophages and dendritic cells) in order to recognize evolutionary conserved antigenic domains in different pathogenic microorganisms (e.g. bacteria).
TLRs initiate innate immune responses such as, for example, inflammatory responses, by identifying conserved pathogen-associated molecule patterns (PAMPs).
Learn more in:
https://brainly.com/question/10791388
what type of muscle tissue is found in the wall of blood vessels
Answer:
cardiac muscle
they are mainly in the walls of the heart. it's contraction pumps blood that allows the heart to beat
Name three components of the cell membrane and explain how each contributes the semipermeable nature of the membrane.
The principal components of the plasma membrane are lipids ( phospholipids and cholesterol), proteins, and carbohydrates. The plasma membrane protects intracellular components from the extracellular environment. The plasma membrane mediates cellular processes by regulating the materials that enter and exit the cell.
pls helppppppppppp really need help
Answer:
16: Genes
17: Proteins
18: Offspring
19: Blueprint
20: Code, Dna, Rna
Explanation:
I hope this helps :)
organism that makes its own food
Answer:
Explanation:
autotrophs
An autotroph is an organism that can produce its own food using light, water, carbon dioxide, or other chemicals. Because autotrophs produce their own food, they are sometimes called producers. Plants are the most familiar type of autotroph, but there are many different kinds of autotrophic organisms.
Underground stem of which of the following does not store food? a)Zaminkand
b)Colocasia
c)Turmeric
d)Asparagus
Answer:
asparagus doesn't store food.
The effect of pH on a certain enzyme is shown in the graph. At what pH would the enzyme be most effective?
Answer:
2
Explanation:
The enzyme will be the most effective between 8 and 10
The enzyme will show maximum activity in the range of pH between 8 and 10. This can be the enzyme's optimum pH as at this range it is found to be most effective. Thus, the correct option is 2.
What are enzymes?Enzymes are the biocatalysts. They act as enzymes in the biochemical reactions by reducing the activation energy required by the reactants to form products. Enzymes remain unused in a reaction.
Enzyme activity depends upon different factors which include temperature, pressure, pH, etc. Enzymes show maximum activity at the optimum conditions of these environmental factors.
From the given graph, it can be interpreted that the enzyme shows maximum rate of action between the pH range of 8 and 10. Thus, this is the optimum range of pH.
Therefore, the correct option is 2.
Learn more about Enzymes here:
https://brainly.com/question/1996362
#SPJ5
the most prevalent type of antibody in the blood is
Answer:
IgG is the most abundant antibody isotype in the blood (plasma), accounting for 70-75% of human immunoglobulins (antibodies). IgG detoxifies harmful substances and is important in the recognition of antigen-antibody complexes by leukocytes and macrophages.
Explanation:
IgG is the most abundant antibody isotype in the blood (plasma
What is the
Digestive process
Answer:
the digestive process is the process in which food travels down our thorax into our stomach where the acid breaks it down to gather nutrients and what not to fuel our body then the rest is turned into waste.
Explanation:
As organisms release energy during cellular respiration, carbon dioxide is produced from the carbon in energy storage molecules. This process moves carbon from biotic to ________________ a the producers b the decomposers c abiotic matter
Answer:
Abiotic Matter
Explanation:
Which equations are balanced? Select all that appl
Answer:
B
D
F
Explanation:
Why does litmus paper go blue when ammonium hydroxide touches it
How is genomics related to genes and DNA?
Answer:
A gene consists of enough DNA to code for one protein, and a genome is simply the sum total of an organism's DNA.
Genomic DNA, or gDNA, is the chromosomal DNA of an organism, representing the bulk of its genetic material. ... In research, genomic DNA is useful tools in applications such as PCR, library construction, Southern blotting, hybridizations, SNP analysis, and molecular diagnostic assays.
Answer:
DNA
DNA is the molecule that is the hereditary material in all living cells.
Genes are made of DNA, and so is the genome itself. A gene consists of enough DNA to code for one protein, and a genome is simply the sum total of an organism's DNA.
DNA is long and skinny, capable of contorting like a circus performer when it winds into chromosomes. It's skinny as a whip and smart as one too, containing all the information necessary to build a living organism. In a very real sense, DNA is information.
WHAT IS DNA MADE OF?
DNA is a very large molecule, made up of smaller units called nucleotides that are strung together in a row, making a DNA molecule thousands of times longer than it is wide.
Each nucleotide has three parts: a sugar molecule, a phosphate molecule, and a structure called a nitrogenous base. The nitrogenous base is the part of the nucleotide that carries genetic information, so the words "nucleotide" and "base" are often used interchangeably. The bases found in DNA come in four varieties: adenine, cytosine, guanine, and thymine—often abbreviated as A, C, G, and T, the letters of the genetic alphabet.
How did people find out that DNA is the hereditary material?
DNA was largely ignored for decades after a German chemist, Friedrich Miescher, first isolated the white, slightly acidic substance from the nucleus of cells in 1869. No one knew what DNA's function was—in fact, some doubted that it had a function at all—so they pretty much left the stuff alone.
Very few people thought that DNA could be the hereditary material. Early studies of DNA suggested, erroneously, that the molecule was made up of the same sequence of four bases repeated over and over—ACGTACGTACGT… for example. No one could imagine how such a monotonously simple molecule could contain the information necessary to build a living organism.
But during the 1930s and 1940s, new experiments began to suggest that DNA might, in fact, be important. It turned out that different strains of bacteria can exchange DNA and that when they do certain traits, such as the ability to cause disease in humans, can be passed from one strain of bacteria to another. Scientists also learned that when a virus infects a cell it injects its DNA into the cell, which then produces many copies of the virus, suggesting that DNA contains instructions for building viruses. And they found that different species of organisms have different proportions of bases in their DNA—one species might have DNA that is 30 percent A, 20 percent C, 20 percent G, and 30 percent T, while another might have 20 percent A, 30 percent C, 30 percent G, and 20 percent T. People began to think that genetic information might be written in the differences between the DNA bases of different species.
What does DNA look like?
A DNA molecule is a double helix, a structure that looks much like a ladder twisted into a spiral. The sides of the ladder are made of alternating sugar and phosphate molecules, the sugar of one nucleotide linked to the phosphate of the next. DNA is often said to have a sugar and phosphate "backbone."
Each rung of the ladder is made of two nitrogenous bases linked together in the middle. The length of a DNA molecule is often measured in "base pairs," or bp—that is, the number of rungs in the ladder. Sometimes, this unit of measurement is shortened simply to "bases."The structure of DNA was worked out in 1953 by James D. Watson and Francis Crick, who worked together in the Cavendish laboratory in Cambridge, England. By the time they began their work in the early 1950s, it was clear that DNA is the hereditary material, and scientists were racing to find out more about the long-ignored molecule, picking apart the implications of each new detail. Everyone knew they couldn't really understand how DNA works until they understood how its nucleotide building blocks are put together.
(Im a Really fast Typer and Thinker)
As the troponin changes shape (due to binding calcium), it moves the ______ molecule to which it is attached, thus exposing the active sites on the G-actin molecules.
As the troponin changes shape (due to binding calcium), it moves the tropomysin molecule to which it is attached.
Once calcium binds to troponin and causes it to change it shape, it removes the tropomysin away from the binding site therefore effectively exposing the myosin binding sites.
This occurs during muscle contraction (movement) in the skeletal muscles.
Learn more: https://brainly.com/question/13537142
Answer: tropomyosin
Explanation: just took a quiz :)
Scientists find cell with a genetic mutation in the cyclin dependant kinase gene. The mutation leads to a misshapen CDK molecule that will not bind to cyclin molecules. How would this impact the cell cycle of that cell
Answer:
The mutation leads to a misshapen CDK molecule that will not bind to cyclin molecules. How will this impact the resulting daughter cell? Explain. If cyclin molecules did not bind to CDK, the cell could not progress through the cell cycle.
Explanation:
I could be wrong...if I am I'm very sorry